Salmon age and sex composition and mean lengths for the Yukon River area, 2001

by

Richard A. Price

Disclaimer

Data within this report includes age, sex and length data for Chinook, chum and coho salmon from selected projects on the Yukon River in 2001. The information presented is preliminary may contain errors.

This document should be cited as:

Price, R. A. 2002. Salmon age and sex composition and mean lengths for the Yukon River area, 2001. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A.02-54, Anchorage.

May 2002

Alaska Department of Fish and Game

Division of Commercial Fisheries

Author

Richard A. Price is a Yukon River Stock ID. Fisheries Biologist, for the Alaska Department of Fish and Game, Commercial Fisheries Division, 333 Raspberry Road, Anchorage, AK 99518.

Disclaimer

This data within this notebook contains age, sex and length data for chinook, chum and coho salmon from selected projects on the Yukon River. The information presented in this notebook is preliminary and requires further review by staff. The following text and tables may contain errors. Staff is encouraged to forward any error encountered while using or reviewing this notebook to Richard A. Price. The tables and information in this notebook should not be used for public distribution.

LIST OF TABLES

Page
Percent age and sex composition of chinook salmon, subsistence caught and sampled, Yukon Rive District Y-1, 2001
Percent age and sex composition of chinook salmon, subsistence caught and sampled, Yukon River, 2001
Percent age and sex composition of summer chum salmon, subsistence caught and sampled, Yukon River, 2001
Percent age and sex composition of fall coho salmon, subsistence caught and sampled, Yukon River, 2001
Percent age and sex composition of all salmon species, subsistence caught and sampled, Yukon River, 2001
Percent age composition of Chinook Salmon sampled from District 1 commercial harvest, 8.5" SGN, Yukon River, 1985-2001
Commercial harvest totals weighted by catch and age of Chinook Salmon sampled from District 1, unrestricted mesh, with fresh water age classification, Yukon River 1985-2001 16
Percent age composition of Chinook Salmon sampled from Big Eddy Test catch, 8.5" SGN, Yukon River, 1985-2001
Yukon River chinook salmon age composition from commercial, test and escapement projects, 2001
Yukon River chinook salmon age composition from escapement projects, 1984-2001. Only tributaries with long standing historical data were selected
Yukon River District 1 Emmonak chinook salmon subsistence catch from 5.5" mesh gillnets, age and sex composition by stratum, and mean length (mm), 2001
Yukon River District 1 Emmonak chinook salmon subsistence catch from 8.5" mesh gillnets, age and sex composition by stratum, and mean length (mm), 2001
Yukon River District 1 Emmonak chinook salmon subsistence catch from mixed mesh gillnets, age and sex composition by stratum, and mean length (mm), 2001
Yukon River District 4 Kaltag chinook salmon subsistence age and sex composition by stratum and mean length, 2001

Pa	age
Yukon River District 4 Galena chinook salmon subsistence age and sex composition by stratum and mean length (mm), 2001	24
Yukon River District 4 Ruby chinook salmon subsistence age and sex composition by stratum and mean length, 2001	25
Yukon River District 5 chinook salmon subsistence age and sex composition by stratum and mean length, 2001	26
Yukon River District 6 chinook salmon subsistence age and sex composition by stratum and mean length (mm), 2001	27
Yukon River Big Eddy chinook salmon drift gillnet 5.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	28
Yukon River Big Eddy chinook salmon drift gillnet 8.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	29
Yukon River Big Eddy chinook salmon set gillnet 7.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	30
Yukon River Big Eddy chinook salmon set gillnet 8.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	31
Yukon River Middle Mouth chinook salmon drift gillnet 8.25" test fish catch age and sex composition by stratum and mean length (mm), 2001	32
Yukon River Middle Mouth chinook salmon set gillnet 8.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	33
Yukon River Marshall chinook salmon drift gillnet 8.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	34
Yukon River Russian Mission chinook salmon drift gillnet 8.5" test fish catch age and sex composition by stratum and mean length (mm), 2001	35
Yukon River Pilot Station Sonar chinook salmon test fish catch age and sex composition by mesh size, 2001	36
Yukon River Canadian Sheep Rock and White Rock chinook salmon test fishwheel catch age and sex composition by stratum and mean length (mm), 2001	37

Page
Andreafsky River chinook salmon escapement age and sex composition by stratum and mean length (mm), 2001
Anvik River chinook salmon escapement age and sex composition by stratum and mean length (mm), 2001
Beaver chinook salmon catch age and sex composition by stratum and mean length (mm), 2001
Chatanika River chinook salmon escapement age and sex composition by stratum, 2001
Chena River chinook salmon escapement age and sex composition by stratum, 2001 42
Gisasa River chinook salmon escapement age and sex composition by stratum and mean length (mm), 2001
Henshaw Creek chinook salmon escapement age and sex composition by stratum and mean length (mm), 2001
Rapids chinook salmon catch age and sex composition by stratum and mean length (mm), 2001
Salcha River chinook salmon catch age and sex composition by stratum and mean length (mm), 2001
Tozitna River chinook salmon escapement age and sex composition by stratum and mean length (mm), 2001
Yukon River District 1 Emmonak chum salmon subsistence age and sex composition by stratum, and mean length (mm), 2001 48
Yukon River District 1 Emmonak chum salmon subsistence age and sex composition by stratum, and mean length (mm), 2001 49
Yukon River District 4 Ruby chum salmon subsistence age and sex composition by stratum and mean length, 2001
Yukon River District 5 chum salmon subsistence age and sex composition by stratum and mean length, 2001

Page
Yukon River Big Eddy chum salmon drift gillnet 5.5" test fish age and sex composition by stratum and mean length (mm), 2001
Yukon River Middle Mouth chum salmon drift gillnet 5.5" test fish catch age and sex composition by stratum and mean length (mm), 2001
Andreafsky River Weir chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Anvik River chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Clear Creek chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Gisasa River chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Henshaw Creek chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Nulato River chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Tozitna River chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Yukon River District 5 Tanana Village fall chum salmon subsistence age and sex composition by stratum and mean length (mm), 2001
Yukon River Big Eddy fall chum salmon drift gillnet 6.0" test fish age and sex composition by stratum and mean length (mm), 2001
Yukon River Middle Mouth fall chum salmon drift gillnet 6.0" test fish age and sex composition by stratum and mean length (mm), 2001
Delta River fall chum salmon test fish catch age and sex composition by stratum and mean length (mm), 2001
Mountain Village fall chum salmon escapement age and sex composition by stratum and mean length (mm), 2001

<u>1 age</u>
Sheenjek River fall chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Toklat River fall chum salmon escapement age and sex composition by stratum and mean length (mm), 2001
Yukon River District 5 Tanana Village coho salmon subsistence age and sex composition by stratum, and mean length (mm), 2001
Yukon River Big Eddy coho salmon drift gillnet 6.0" test fish age and sex composition by stratum, and mean length (mm), 2001
Yukon River Middle Mouth coho salmon drift gillnet 6.0" test fish age and sex composition by stratum, and mean length (mm), 2001
Yukon River District 4 Kaltag coho salmon test fish age and sex composition by stratum, and mean length (mm), 2001
Yukon River Mountain Village coho salmon test fish age and sex composition by stratum, and mean length (mm), 2001
Andreafsky River coho salmon escapement age and sex composition by stratum, and mean length (mm), 2001
Anvik River coho salmon sport fish age and sex composition by stratum, and mean length (mm), 2001
Otter Creek coho salmon escapement age and sex composition by stratum, and mean length (mm), 2001

CHINOOK SALMON

In 2001, no commercial chinook salmon harvest was permitted in any Yukon River fishing District, due to the preseason outlook for the continuation of below average to poor run production. The subsistence catch from District 1 combined mixed mesh gillnets for age-6 fish was approximately 66.1% of the catch, followed by age-5 fish with approximately 22.4% of the catch. The subsistence catch from District 1, 4, 5, and 6 from combined gear types of mixed mesh gillnets and fishwheels for age-6 fish was approximately 55.6% of the catch, followed by age-5 fish with approximately 29.2% of the catch. The sex ratio for all Districts subsistence catch combined was approximately 34.4% females. The catch of combined Big Eddy and Middle Mouth test fish projects, using 8.5" mesh size gillnets, was approximately 80.6 % age-6 fish followed by 10.6% age-5 fish. The sex ratio for chinook salmon samples taken from combined Big Eddy and Middle Mouth test fisheries was approximately 56.7% females

Chinook Salmon Commercial Catch

There was no chinook salmon commercial fishing in 2001.

Chinook Salmon Subsistence Catch

The estimated age composition of chinook salmon samples collected from the **District 1 5.5"** mesh size gillnet subsistence harvest was 9.2% age-4, 43.7% age-5, 41.4% age-6 and 5.7% age-7 fish. Sex composition was 25.3% females and 74.7% males.

The estimated age composition of chinook salmon samples collected from the **District 1 8.5"** mesh size gillnet subsistence harvest was 1.3% age-4, 12.9% age-5, 76.1% age-6 and 9.5% age-7 fish. Sex composition was 42.7% females and 57.3% males.

The estimated age composition of chinook salmon samples collected from the **District 1 mixed** mesh size gillnet subsistence harvest was 6.7% age-4, 26.7% age-5, 64.4% age-6 and 2.2% age-7 fish. Sex composition was 44.4% females and 55.6% males.

The estimated age composition of chinook salmon samples collected from the **District 4 8.25"** mesh size gillnet subsistence harvest was 3.0% age-4, 26.2% age-5, 62.8% age-6 and 7.9% age-7 fish. Sex composition was 48.2% females and 51.8% males.

The estimated age composition of chinook salmon samples collected from the **District 4 8.5"** mesh size gillnet subsistence harvest was 2.6% age-5, 87.2% age-6 and 10.3% age-7 fish. Sex composition was 38.5% females and 61.5% males.

The estimated age composition of chinook salmon samples collected from the **District 4 fishwheel** subsistence harvest was 1.1% age-3, 20.2% age-4, 36.2% age-5, 39.4% age-6 and 3.2% age-7 fish. Sex composition was 17.0% females and 83.0% males.

The estimated age composition of chinook salmon samples collected from the **District 5 fishwheel** subsistence harvest was 24.5% age-4, 43.5% age-5 and 32.0% age-6 fish. Sex composition was 23.8% females and 76.2% males.

The estimated age composition of chinook salmon samples collected from the **District 6 fishwheel** subsistence harvest was 15.9% age-4, 56.8% age-5 and 27.3% age-6 fish. Sex composition was 15.9% females and 84.1% males.

Chinook Salmon Test Fish Projects

Lower Yukon River

The estimated age composition of chinook salmon samples collected from the **Big Eddy** test fishing project using **5.5"mesh size drift gillnets** was 39% age-4, 19.5% age-5, 39% age-6 and 2.4% age-7 fish. Sex composition was 19.5% females and 80.5% males.

The estimated age composition of chinook salmon samples collected from the **Big Eddy** test fishing project using **8.25"mesh size drift gillnets** was 1.8% age-4, 15.8% age-5, 70.6% age-6 and 11.9% age-7 fish. Sex composition was 45.6% females and 54.4% males.

The estimated age composition of chinook salmon samples collected from the **Big Eddy** test fishing project using 7.5"mesh size set gillnets was 41.5% age-5, 52.8% age-6 and 5.7% age-7 fish. Sex composition was 35.8% females and 64.2% males.

The estimated age composition of chinook salmon samples collected from the **Big Eddy** test fishing project using **8.5"mesh size set gillnets** was 0.9% age-4, 10.8% age-5, 78.3% age-6 and 9.9% age-7 fish. Sex composition was 50.5% females and 49.5% males.

The estimated age composition of chinook salmon samples collected from the Middle Mouth test fishing project using 8.25"mesh size drift gillnets was 0.9% age-4, 17.1% age-5, 76.9% age-6 and 5.1% age-7 fish. Sex composition was 54.7% females and 45.3% males.

The estimated age composition of chinook salmon samples collected from the **Middle Mouth** test fishing project using **8.5"mesh size set gillnets** was 0.2% age-4, 10.4% age-5, 82.4% age-6, and 7.0% age-7 fish. Sex composition was 61.2% females and 38.8% males.

The estimated age composition of chinook salmon samples collected from the Marshall radio tagging project using 8.5" mesh size drift gillnet was 0.8% age-4, 14.0% age-5, 77.2% age-6, and 8.0% age-7 fish. Sex composition was 52.5% females and 47.5% males.

The estimated age composition of chinook salmon samples collected from the Russian Mission radio tagging project using 8.5" mesh size drift gillnet was 1.8% age-4, 17.2% age-5, 75.9% age-6, and 5.1% age-7 fish. Sex composition was 51.6% females and 48.4% males.

Pilot Station Sonar Project

The Pilot Station sample is not weighted by catch by mesh size therefore the sample **DOES NOT** reflect the total run passage of salmon by Pilot Station. Because these samples do not represent the run, no pooled age composition was calculated.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 2.75" mesh size drift gillnet test fishing project was 20.0% age-4, 20.0% age-5 and 60.0% age-6 fish. Sex composition was 40.0% females and 60.0% males.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 4.0" mesh size drift gillnet test fishing project was 3.2% age-3, 12.9% age-4, 29.0% age-5 and 54.8% age-6 fish. Sex composition was 48.4% females and 51.6% males.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 5.25" mesh size drift gillnet test fishing project was 13.0% age-4, 36.1% age-5, 49.1% age-6 and 1.9% age-7 fish. Sex composition was 60.2% females and 39.8% males.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 5.75" mesh size drift gillnet test fishing project was 33.3% age-5 and 66.7% age-6 fish. Sex composition was 66.7% females and 33.3% males.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 6.5" mesh size drift gillnet test fishing project was 0.7% age-3, 8.3% age-4, 38.9% age-5, 47.2% age-6 and 4.9% age-7 fish. Sex composition was 62.5% females and 37.5% males.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 7.5" mesh size drift gillnet test fishing project was 2.3% age-4, 33.3% age-5, 59.7% age-6 and 4.7% age-7 fish. Sex composition was 64.3% females and 35.7% males.

The estimated age composition of chinook salmon samples collected from Yukon River Pilot Station Sonar 8.5" mesh size drift gillnet test fishing project was 26.6% age-5, 72.5% age-6 and 0.9% age-7 fish. Sex composition was 64.2% females and 35.8% males.

Upper River

Canadian Projects

The estimated age composition of chinook salmon samples collected from the **Sheep Rock Fish Wheel** test fishing project was 10.6% age-4, 37.6% age-5, 49.1% age-6, and 2.8% age-7 fish. Sex composition was 28.9% females and 71.1% males.

The estimated age composition of chinook salmon samples collected from the White Rock Fish Wheel test fishing project was 10.1% age-4, 47.7% age-5, 38.4% age-6 and 3.8% age-7 fish. Sex composition was 19.4% females and 80.6% males.

Chinook Salmon Escapement Projects

Age composition of chinook salmon samples collected from **Andreafsky River Weir** was 14.5% age-4, 18.5% age-5, 64.5% age-6 and 2.4% age-7 fish. Sex composition was 63.7% females and 36.3% males.

Age composition of carcass samples collected from Anvik River chinook salmon was 11.1% age-4, 30.1% age-5, 53.0% age-6 and 5.7% age-7 fish. Sex composition was 38.3% females and 61.7% males.

Age composition of chinook salmon samples collected from Beaver Creek Weir was 12.5% age-4, 62.5% age-5 and 25.0% age-6 fish. Sex composition was 12.5% females and 87.5% males.

Age composition of carcass samples collected from Chatanika River chinook salmon was 8.6% age-4, 28.6% age-5, 57.1% age-6 and 5.7% age-7 fish. Sex composition was 48.6% females and 51.4% males.

Age composition of carcass samples collected from Chena River chinook salmon was 0.6% age-3, 9.6% age-4, 33.6% age-5, 51.2% age-6 and 5.0% age-7 fish. Sex composition was 44.0% females and 56.0% males.

Age composition of chinook salmon samples collected from Gisasa River Weir project was 0.2% age-3, 16.7% age-4, 21.9% age-5, 58.5% age-6 and 2.8 % age-7 fish. Sex composition was 49.2% females and 50.8% males.

Age composition of chinook salmon samples collected from Henshaw Creek Weir was 11.7% age-4, 44.0% age-5, 43.2% age-6 and 1.1 age-7 fish. Sex composition was 36.3% females and 63.7% males.

Age composition of chinook salmon samples collected from **Rapids Fish Wheel** was 20.0% age-4, 60.0% age-5, 15.0% age-6 and 5.0% age-7 fish. Sex composition was 15.0% females and 85.0% males.

Age composition of carcass samples collected from Salcha River chinook salmon was 0.5% age-3, 10.4% age-4, 33.9% age-5, 52.1% age-6 and 3.1% age-7 fish. Sex composition was 37.5% females and 62.5% males.

Age composition of carcass samples collected from Tozitna River chinook salmon was 1.7% age-3, 13.6% age-4, 32.2% age-5, 50.8% age-6 and 1.7% age-7 fish. Sex composition was 40.7% females and 59.3% males.

SUMMER CHUM SALMON

In 2001, no commercial summer chum salmon harvest was permitted in any Yukon River fishing District, due to the continuation of below average to poor run production. Districts 1 summer chum salmon subsistence harvest with combined mixed mesh size gillnets composed approximately 79.9% age-5 fish. Sex ratio for Districts 1 were approximately 49.8% females. Big Eddy and Middle Mouth Drift combined harvest test fishing percent of age-5 fish was approximately 74.1% with 5.5"mesh size gillnet. Sex composition in Big Eddy and Middle Mouth combined test fishing catch was approximately 64.7% females

Summer Chum Salmon Commercial Catch

There was no summer chum salmon commercial fishing in 2001.

Summer Chum Salmon Subsistence Catch

The estimated age composition of chum salmon samples collected from **District 1 5.5" mesh size gillnet** subsistence harvest was 17.0% age-4, 80.5% age-5 and 2.5 % age-6 fish. Sex composition was 49.8% females and 50.2% males.

The estimated age composition of chum salmon samples collected from **District 1 mixed mesh size gillnet** subsistence harvest was 19.2 % age-4, 78.8% age-5 and 1.9% age-6 fish. Sex composition was 46.2% females and 53.8% males.

The estimated age composition of chum salmon samples collected from **District 4 Fish Wheel** subsistence harvest was 7.4% age-4, 88.9% age-5 and 3.7% age-6 fish. Sex composition was 57.4% females and 42.6% males.

The estimated age composition of chum salmon samples collected from **District 5 Fish Wheel** subsistence harvest was 2.6% age-4, 92.3% age-5 and 5.1% age-6 fish. Sex composition was 51.3% females and 48.7% males.

Summer Chum Salmon Test Fishing Catch

The estimated age composition of chum salmon samples collected from the **Big Eddy** test fishing project using **5.5 inch mesh drift gillnets** was 27.1% age-4, 71.4% age-5 and 1.5% age-6 fish. Sex composition was 63.4% females and 36.6% males.

The estimated age composition of chum salmon samples collected from the **Middle Mouth** test fishing project using **5.5 inch mesh drift gillnet** 18.0% age-4, 81.5% age-5 and 0.5% age-6 fish. Sex composition was 68.5% females and 31.5% males.

Summer Chum Salmon Escapement Projects

Age composition of chum salmon samples collected from Andreafsky River Weir was 19.6% age-4, 78.4% age-5 and 2.0% age-6 fish. Sex composition was 52.0% females and 48.0% males.

Age composition of chum salmon samples collected from Anvik River Sonar beach seine project was 0.2% age-3, 13.1% age-4, 84.6% age-5 and 2.1% age-6 fish. Sex composition was 54.4% females and 45.6% males.

Age composition of chum salmon samples collected from Clear Creek Tower was 33.4% age-4, 60.8% age-5 and 5.8% age-6 fish. Sex composition was 32.4% females and 67.6% males.

Age composition of chum salmon samples collected from Gisasa River Weir was 0.2% age-3, 21.0% age-4, 73.3% age-5 and 5.5% age-6 fish. Sex composition was 50.3% females and 49.7% males.

Age composition of chum salmon samples collected from **Henshaw Creek Weir** was 0.2% age-3, 33.9% age-4, 63.6% age-5 and 2.4% age-6 fish. Sex composition was 65.8% females and 34.2% males.

Age composition of chum salmon samples collected from **Nulato River Tower** was 8.3% age-4 and 91.7% age-5. Sex composition was 44.4% females and 55.6% males.

Age composition of chum salmon samples collected from **Tozitna River** was 18.8% age-4, 78.2% age-5 and 3.0% age-6 fish. Sex composition was 53.8% females and 46.2% males.

FALL CHUM SALMON SEASON

Fall Chum Salmon Commercial Catch

There was no fall chum salmon commercial fishing in 2001.

Fall Chum Salmon Subsistence Catch

The estimated age composition of fall chum salmon samples collected from **District 5 Fish Wheel** subsistence harvest was 54.2% age-4, 45.4% age-5 and 0.3% age-6 fish. Sex composition was 56.6% females and 43.4% males.

Fall Chum Salmon Test Fishing Catch

The estimated age composition of fall chum salmon samples collected from **Big Eddy** test fishing project using **6.0 inch mesh drift gillnet** was 0.3% age-3, 71.1% age-4 and 28.6% age-5 fish. Sex composition was 59.3% females and 40.7% males.

The estimated age composition of fall chum salmon samples collected from **Middle Mouth** test fishing project using **6.0 inch mesh drift gillnet** was 0.4% age-3, 63.1% age-4, 36.3% age-5 and 0.2% age-6 fish. Sex composition was 60.8% females and 39.2% males.

Fall Chum Salmon Escapement Projects

Age composition of fall chum salmon samples collected from **Delta River** was 1.8% age-3, 63.3% age-4, 34.3% age-5 and 0.6% age-6 fish. Sex composition was 44.4% females and 55.6% males.

Age composition of fall chum salmon samples collected from **Mountain Village** was 2.2% age-3, 59.6% age-4 and 38.3% age-5 fish. Sex composition was 89.6% females and 10.4% males.

Age composition of fall chum salmon samples collected from **Sheenjek River** was 36.6% age-4 and 63.4% age-5 fish. Sex composition was 45.1% females and 54.9% males.

Age composition of fall chum salmon samples collected from **Toklat River** was 2.4 % age-3, 74.4% age-4, 22.6% age-5 and 0.6% age-6 fish. Sex composition was 47.6% females and 52.4% males.

COHO SALMON

Coho Salmon Commercial Catch

There was no coho salmon commercial fishing in 2001.

Coho Salmon Subsistence Catch

The estimated age composition of coho salmon samples collected from **District 5 Fish Wheel** subsistence harvest was 22.2% age-3 and 77.8% age-4 fish. Sex composition was 50.0% females and 50.0% males.

Coho Salmon Test Fishing Catch

The estimated age composition of coho salmon samples collected from **Big Eddy** test fishing project using **6.0 inch mesh drift gillnet** was 12.3% age-3, 83.8% age-4 and 3.8% age-5 fish. Sex composition was 46.9% females and 53.1% males.

The estimated age composition of coho salmon samples collected from **Middle Mouth** test fishing project using **drift gillnet** was 10.3% age-3, 85.7% age-4 and 4.0% age-5 fish. Sex composition was 56.0% females and 44.0% males.

The estimated age composition of coho salmon samples collected from **Kaltag** test fishing project using **6.0** inch mesh drift gillnet was 30.0% age-3, 67.5% age-4 and 2.5% age-5 fish. Sex composition was 40.0% females and 60.0% males.

The estimated age composition of coho salmon samples collected from Mountain Village test fishing project using 6.0 inch mesh drift gillnet was 10.0% age-3, 86.7% age-4 and 3.4% age-5 fish. Sex composition was 50.7% females and 49.3% males.

Coho Salmon Escapement Project

Age composition of coho salmon samples collected from **Andreafsky River Weir** project was 2.7% age-3, 94.2% age-4 and 3.1% age-5 fish. Sex composition was 41.8% females and 58.2% males.

Age composition of coho salmon samples collected from Anvik River Sport Catch project was 16.3% age-3 and 83.7% age-4 fish. Sex composition was 39.5% females and 60.5% males.

Age composition of coho salmon samples collected from Otter Creek project was 48.0% age-3 and 52.0% age-4 fish. Sex composition was 36.0% females and 64.0% males.

Percent age and sex composition of chinook salmon, subsistence caught and sampled, Yukon River District Y-1, 2001.

						Age			
Location	% Females	# Aged	# Sexed	3	4	5	6	7	Totals
Y-1ª 6									
Season Total	25.3	198	87	0.0	15.2	42.9	38.4	3.5	100.0
Season Total Y-1°	42.7	450	233	0.0	1.3	12.9	76,1	9.7	100.0
Season Total Y-1 ^d	44.4	45	45	0.0	6.7	26.7	64.4	2.2	100.0
Season Total Pooled Y-1 ^{de}	38.8	365	410	0.0	4.1	22.4	66.1	7.4	100.0
Total	38.8	693	365	0.0	5.6	22.3	64.6	7.5	100.0

^a Samples collected from 5.5" mesh gillnet.

^b Samples collected from 8.5" mesh gillnet.

^c Samples collected from mixed mesh gillnets.

^d Data includes samples from 5.5", 8.5" and mixed mesh gillnets.

^e Data includes samples collected that did not include sex.

Percent age and sex composition of chinook salmon, subsistence caught and sampled, Yukion River, 2001.

		Age							
	/ T	3	4	5	6	7			
Location	Sample Size						Totals		
Y-1ª									
%Male		0.0	9.2	36.8	25.3	3.4	74.7		
%Female		0.0	0.0	6.9	16.1	2.3	25.3		
Season Total	87	0.0	9.2	43.7	41.4	5.7	100.0		
Y-16									
%Male		0.0	1.7	9.0	41.5	5.1	57.3		
%Female		0.0	0.0	4.7	34.2	3.8	42.7		
Season Total	233	0.0	1.7	13.7	75.6	B.9	100.0		
Y-1°									
%Male		0.0	6.7	17.8	31.1	0.0	55.6		
%Female		0.0	0.0	8.9	33.3	2.2	44.4		
Season Total	45	0.0	6.7	26.7	64.4	2.2	100.0		
Y-10									
%Male		0.0	4.1	16.7	36.3	4.1	61.2		
%Female		0.0	0.0	5.7	29.8	3.3	38.8		
Season Total	365	0.0	4.1	22.4	66.1	7.4	100.0		
Y-4°									
%Male		0.0	1.0	13.3	37.0	2.5	53.7		
%Female		0.0	1.5	8.4	30.5	5.9	46.3		
Season Total	203	0.0	2.5	21.7	67.5	8.4	100.0		
Y-4'									
%Male		1.1	20.2	35.1	26.6	0.0	83.0		
%Female		0.0	0.0	1.1	12.8	3.2	17.0		
Season Total	94	1.1	20.2	36.2	39.4	3.2	100.0		
Y-51									
%Male		0.0	24.5	37.4	14.3	0.0	76.2		
%Female		0.0	0.0	6.1	17.7	0.0	23.8		
Season Total	147	0.0	24.5	43.5	32.0	0.0	100.0		
Y-61									
%Male		0.0	15.9	52.3	15.9	0.0	84.1		
%Female		0.0	0.0	4.5	11.4	0.0	15.9		
Season Total	44	0.0	15.9	56.8	27.3	0.0	100.0		
Total All Districts									
%Male		0.1	9.3	23.3	30.6	2.3	65.6		
%Female		0.0	0.4	5.9	25.1	3.2	34.4		
Total	1,218	0.1	9.7	29.2	55.7	5.5	100.0		

^a Samples collected from 5.5" mesh gillnet.

^b Samples collected from 8.5" mesh gillnet.

^c Samples collected from mixed mesh gillnets.

^d Data includes samples from 5.5", 8.5" and mixed mesh gillnets.

^e Samples collected from 8.25" & 8.5" mesh gillnet.

Samples collected from fishwheels.

Percent age and sex composition of summer chum salmon, subsistence caught and sampled, Yukon River 2001.

	_	Age						
		3	4	5	6	7		
Location	Sample Size						Totals	
Y-1ª								
%Males		0.0	7.4	41.1	1.7	0.0	50.2	
%Females		0.0	6.8	41.9	1.1	0.0	49.8	
Season Total	353	0.0	14.2	83.0	2.8	0.0	100.0	
Y-1 b								
%Males		0.0	11.5	40.4	1.9	0.0	53.8	
%Females		0,0	7.7	38.4	0.0	0.0	46.1	
Season Total	52	0.0	19.2	78.8	1.9	0.0	99.9	
Y-4 °								
%Males		0.0	3.7	38.9	0.0	0.0	42.6	
%Females		0.0	3.7	50.0	3.7	0.0	57.4	
Season Total	54	0.0	7.4	88.9	3.7	0.0	100.0	
Y-5 b								
%Males		0.0	20.3	22.7	0.3	0.0	43.3	
%Females		0.0	33.9	22.7	0.0	0.0	56.6	
Season Total	295	0.0	54.2	45.4	0.3	0.0	99.9	
Y-5 °								
%Males		0.0	0.0	43.6	5.1	0.0	48.7	
%Females		0.0	2.6	48.7	0.0	0.0	51.3	
Total All Periods	39	0.0	2.6	92.3	5.1	0.0	100.0	
Total All Districts								
%Males		0.0	11.9	34.2	1.3	0.0	47.3	
%Females		0.0	16.5	35.4	0.8	0.0	52.7	
Total	793	0.0	28.4	69.6	2.1	0.0	100.0	

^a Samples collected from 5.5" mesh gillnet.

^b Samples collected from mixed mesh gillnets.

^c Samples collected from fishwheels.

Percent age and sex composition of fall coho salmon, subsistence caught and sampled, Yukon River 2001.

			4		
Location	Sample Size	3	4	5	Totals
Y-1					101
%Males		16.7	33.3	0.0	50.0
%Females		5.5	44.5	0.0	50.0
Total All Periods	18	22.2	77.8	0.0	100.0
Total All Districts					7.0
%Males		16.7	33.3	0.0	50.0
%Females		5.5	44.5	0.0	50.0
Totals	18	22.2	77.8	0.0	100.0

Percent age and sex composition of all salmon species subsistence caught and sampled, Yukon River, 2001.

				Age			
		3	4	5	6	7	
Species:	Sample Size						Totals
Chinook Salmon							
%Males		0.1	9.3	23.3	30.6	2.3	65.6
%Females		0.0	0.4	5.9	25.1	3.2	34.4
Season Total	854	0.1	9.7	29.2	55.7	5.5	100.0
Summer Chum S	almon						
%Males		0.0	11.9	34.2	1.3	0.0	47.3
%Females		0.0	16.5	35.4	0.8	0.0	52.7
Season Total	793	0.0	28.4	69.6	2.0	0,0	100.0
Fall Chum Salmo	n ^b						
%Males		0.0	0.0	0.0	0.0	0.0	0.0
%Females		0.0	0.0	0.0	0.0	0.0	0.0
Season Total	0	0.0	0.0	0.0	0.0	0.0	0.0
Coho Salmon							
%Males		16.7	33.3	0.0	0.0	0.0	50.0
%Females		5.5	44.5	0.0	0.0	0.0	50.0
Season Total	18	22.2	77.8	0.0	0.0	0.0	100.0

No salmon commercial fishing in 2001.
 No fall chum salmon subsistence samples in 2001.

Percent age composition of Chinook Salmon sampled from District 1 commercial harvest, 8.5" SGN, Yukon River 1985-2001 bc

Age in Years

Number						
Sampled	4уг	5yr	6yr	7yr	8уг	Total
233	1.7%	13 7%	75 604	9 00%	0.00/	00.00/
						99.9%
						100.0%
						100.0%
						100.0%
						100.0%
the state of the s						100.0%
						100.0%
						100.0%
			71,777,77			100.1%
						100.1%
		15, 1800, 04,				100.0%
						100.0%
the second second						100.0%
						100.0%
						100.0%
5/6	0.9%	4.4%	01.9%	12.5%	0.3%	100.0%
1,339	0 2.4%	0 22.9%	1 63.1%	0 11.3%	0 0.3%	1 100.0%
	233 721 1,857 1,311 1,881 2,093 1,884 1,392 1,673 1,354 1,532 1,537 982 1,022 1,436 1,279 576	Sampled 4yr 233 1.7% 721 1.1% 1,857 2.1% 1,311 3.6% 1,881 4.4% 2,093 1.2% 1,884 3.0% 1,392 1.7% 1,673 4.5% 1,354 2.3% 1,532 1.3% 1,537 7.2% 982 0.8% 1,022 3.2% 1,436 1.2% 1,279 1.0% 576 0.9%	Sampled 4yr 5yr 233 1.7% 13.7% 721 1.1% 27.9% 1,857 2.1% 14.8% 1,311 3.6% 54.8% 1,881 4.4% 10.9% 2,093 1.2% 37.0% 1,884 3.0% 11.9% 1,392 1.7% 42.7% 1,673 4.5% 21.2% 1,354 2.3% 12.0% 1,532 1.3% 39.4% 1,537 7.2% 21.5% 982 0.8% 27.0% 1,022 3.2% 18.6% 1,279 1.0% 26.5% 576 0.9% 4.4%	Sampled 4yr 5yr 6yr 233 1.7% 13.7% 75.6% 721 1.1% 27.9% 63.7% 1,857 2.1% 14.8% 81.4% 1,311 3.6% 54.8% 33.7% 1,881 4.4% 10.9% 83.0% 2,093 1.2% 37.0% 37.6% 1,884 3.0% 11.9% 80.9% 1,392 1.7% 42.7% 50.6% 1,673 4.5% 21.2% 64.9% 1,354 2.3% 12.0% 81.5% 1,532 1.3% 39.4% 50.1% 1,537 7.2% 21.5% 62.8% 982 0.8% 27.0% 59.0% 1,022 3.2% 18.6% 41.4% 1,436 1.2% 5.6% 79.9% 1,279 1.0% 26.5% 44.5% 576 0.9% 4.4% 81.9%	Sampled 4yr 5yr 6yr 7yr 233 1.7% 13.7% 75.6% 8.9% 721 1.1% 27.9% 63.7% 7.3% 1,857 2.1% 14.8% 81.4% 1.7% 1,311 3.6% 54.8% 33.7% 7.8% 1,881 4.4% 10.9% 83.0% 1.7% 2,093 1.2% 37.0% 37.6% 24.0% 1,884 3.0% 11.9% 80.9% 4.1% 1,392 1.7% 42.7% 50.6% 5.0% 1,673 4.5% 21.2% 64.9% 9.5% 1,354 2.3% 12.0% 81.5% 4.3% 1,532 1.3% 39.4% 50.1% 9.0% 1,537 7.2% 21.5% 62.8% 8.4% 982 0.8% 27.0% 59.0% 11.8% 1,022 3.2% 18.6% 41.4% 35.3% 1,436 1.2% 5.6%<	Sampled 4yr 5yr 6yr 7yr 8yr 233 1.7% 13.7% 75.6% 8.9% 0.0% 721 1.1% 27.9% 63.7% 7.3% 0.0% 1,857 2.1% 14.8% 81.4% 1.7% 0.0% 1,311 3.6% 54.8% 33.7% 7.8% 0.1% 1,881 4.4% 10.9% 83.0% 1.7% 0.0% 2,093 1.2% 37.0% 37.6% 24.0% 0.2% 1,884 3.0% 11.9% 80.9% 4.1% 0.1% 1,392 1.7% 42.7% 50.6% 5.0% 0.0% 1,673 4.5% 21.2% 64.9% 9.5% 0.0% 1,354 2.3% 12.0% 81.5% 4.3% 0.0% 1,532 1.3% 39.4% 50.1% 9.0% 0.2% 1,537 7.2% 21.5% 62.8% 8.4% 0.1% 982 0.8%

^a No commercial harvest 2001, substituted subsistence harvest data District 1, 8.5"mesh gillnet.

^b No mesh size restrictions.

^c Discrepancies in row and column addition by category are due to rounding error and may be ignored.

Commercial harvest totals weighted by catch, by age, of Chinook Salmon sampled from District 1, unrestricted mesh, with fresh water age classificatin displayed, Yukon River 1985-2001. bc

Age or Age Group

Year	1.1	1.2	1.3	2.2	1.4	2.3	1.5	2.4	1.6	2.5	Total
	3yr	4 yr	5	уг	6	yr	7	yr	8	lyr	
2001 ^a	0	0	0	0	0	0	0	0	0	0	0
2000	0	54	1,320	0	3,014	O	324	22	0	0	4,735
1999	0	787	5,513	0	32,206	29	472	139	0	0	37,145
1998	0	916	13,886	0	8,513	21	1,934	39	0	20	25,327
1997	0	2,775	6,874	0	52,341	0	1,009	63	0	0	63,062
1996	0	680	20,956	0	21,181	113	13,589	2	113	1	56,637
1995	0	2,245	8,904	0	60,460	75	2,918	150	75	0	74,827
1994	0	986	26,317	0	31,123	62	2,897	185	0	0	61,633
1993	0	2,118	9,961	0	30,350	198	3,948	501	0	8	47,084
1992	0	1,251	6,523	0	44,359	95	2,116	225	0	0	54,569
1991	0	667	20,533	0	25,802	273	4,202	465	59	74	52,074
1990	0	3,049	8,878	162	26,289	130	2,480	1,049	0	56	42,092
1989	0	257	8,689	0	18,986	0	3,154	644	97	354	32,180
1988	0	1,049	6,038	65	13,551	36	11,015	545	32	461	32,792
1987	0	725	3,431	32	49,282	348	5,506	2,470	0	353	62,147
1986	0	429	11,374	0	18,843	258	11,074	858	0	86	42,922
1985	0	700	3,341	0	62,171	152	7,984	1,515	0	244	76,106
Mean Proportion	0	1,168 2.4%	10,159 21.2%	16 0.0%	31,154 65.1%	112 0.2%	4,664 9.8%	555 1.2%	24	104 0.2%	47,833 100.0%

^a No commercial harvest 2001.

^b No mesh size restrictions.

^c Discrepancies in row and column addition by category are due to rounding error and may be ignored.

Percent age composition of Chinook Salmon sampled from Big Eddy Test catch, 8.5" SGN, Yukon River 1985-2001a

Age in Years

	Number							
Year	Sampled	Зуг	4yr	5yr	6yr	7уг	8yr	Total
2001	424	0.0%	0.9%	10.8%	78.3%	9.9%	0.0%	99.9%
2000	639	0.2%	0.3%	16.6%	73.9%	9.1%	0.0%	100.1%
1999	510	0.0%	0.4%	9.8%	87.1%	2.7%	0.0%	100.0%
1998	445	0.0%	1.8%	45.8%	43.8%	8.5%	0.0%	99.9%
1997	198	0.0%	2.0%	8.1%	88.4%	1.5%	0.0%	100.0%
1996	256	0.0%	1.6%	66.0%	18.8%	13.7%	0.0%	100.1%
1995	269	0.0%	1.5%	13.0%	80.3%	5.2%	0.0%	100.0%
1994	546	0.2%	1.7%	40.7%	51.9%	5.6%	0.0%	100.1%
1993	288	0.0%	1.0%	28.5%	63.2%	7.3%	0.0%	100.0%
1992	301	0.0%	1.0%	8.6%	84.7%	5.0%	0.6%	99.9%
1991	189	0.0%	1.1%	42.9%	50.8%	4.8%	0.5%	100.1%
1990	136	0.0%	2.9%	10.3%	77.2%	9.6%	0.0%	100.0%
1989	67	0.0%	3.0%	32.8%	52.3%	10.5%	1.5%	100.1%
1988	164	0.0%	3.0%	13.4%	41.5%	41.5%	0.6%	100.0%
1987	397	0.3%	0.8%	2.3%	79.1%	17.1%	0.5%	100.1%
1986	399	0.3%	0.8%	22.3%	51.6%	24.6%	0.3%	100.1%
1985	249	0.0%	1,3%	5.2%	84.5%	8.5%	0.4%	99.9%
Mean Proportion	322	0 0.1%	0 1.5%	0 22.2%	1 65.1%	0 10.9%	0	1 100.0%

^a Discrepancies in row and column addition by category are due to rounding error and may be ignored.

				Age (Group			
	Sample Size	3	4	5	6	7	8	% Fem
Subsistence Y1 (5.5"mesh)	87	0.0	9,2	43.7	41.4	5.7	0.0	25.3
Subsistence Y1 (8.5" mesh)	234	0.0	1.7	13.7	75.7	8.9	0.0	42.7
Subsistence Y4 (8.25" mesh)	203	0.0	2.5	21.7	67.5	8.4	0.0	46.3
Subsistence Y4 (Fish Wheel)	94	1.1	20.2	36.2	39.4	3.2	0.0	17.0
Subsistence Y5 (Fish Wheel)	147	0.0	24.5	43.5	32.0	0.0	0.0	23.8
Subsistence Y6 (Fish Wheel)	44	0.0	15.9	56.8	27.3	0,0	0.0	15.9
BETest (8.25" dgn)	285	0.0	1.8	15.8	70.6	11.9	0.0	45.6
BETest (8.5" sgn)	424	0.0	0.9	10.8	78.3	9.9	0.0	50.5
MMTest (8.25" dgn)	117	0.0	0.9	17.1	76.9	5.1	0.0	54.7
MMTest (8.5" sgn)	596	0.0	0.2	10.4	82.4	7.0	0.0	61.2
Andreafsky R.	124	0.0	14.5	18.5	64.5	2.4	0.0	63.7
Anvik R.*	332	0.0	11.1	30.1	53.0	5.7	0.0	38.3
Chatanika R.ª	35	0.0	8.6	28.6	57.1	5.7	0.0	48.6
Chena R. *	521	0.6	9.6	33.6	51.2	5.0	0.0	44.0
Gisasa R.	636	0.2	16.7	21.9	58.5	2.8	0.0	49.2
Henshaw Cr.	377	0.0	11.7	44.0	43.2	1.1	0.0	36.3
Kaltag Subsistence (8.25" mesh)	164	0.0	3.0	26.2	62.8	7.9	0.0	48.2
Marshall Tagging (8.5" mesh)	978	0.0	0.8	14.0	77.2	8.0	0.0	52.5
Pilot Station (8.5" mesh)	109	0.0	0.0	26.5	73.4	0.0	0.0	64.2
Russian Mission (8.5" mesh)	758	0.0	1.8	17.2	75.9	5.1	0.0	51.6
Salcha River *	192	0.5	10.4	33.9	52.1	3.1	0.0	37,5
Tozitna River a	59	1.7	13.6	32.2	50.8	1.7	0.0	40.7
Sheep Rock Canada (Fish Wheel)	218	0.0	10.6	37.6	49.1	2.8	0.0	28.9
Sheep Rock Canada (Fish Wheel)	417	0.0	10.1	47.7	38.4	3.8	0.0	19,4
Average		0.2	8.3	28.4	58.3	4.8	0.0	41.9

				Age G	roup			
	Sample Size	3	4	5	6	7	8	% Fem
Subsistence Y1 (5.5"mesh)	353	0.0	14.2	83.0	2.8	0.0	0.0	49.8
Subsistence Y5 (5.5"mesh)	295	0.0	54.2	45.4	0.3	0.0	0.0	56.6
BETest_schum (5.5" mesh)	538	0.0	27.1	71.4	1.5	0.0	0.0	63.4
MMTest_schum (5.5" mesh)	200	0.0	18.0	81.5	0.5	0.0	0.0	68.5
BETest_fchum (6.0 " mesh)	332	0.3	71.1	28.6	0.0	0.0	0.0	59,3
MMTest_fchum (6.0 " mesh)	502	0,4	63.1	36.3	0.2	0.0	0.0	60.8
Andreafsky	102	0.0	19.6	78.4	2.0	0.0	0.0	52.0
Anvik R.	518	0.2	13.1	84.6	2.1	0.0	0.0	54.4
Clear Creek	293	0.0	33.4	60.8	5.8	0.0	0.0	43.6
Gisasa R.	581	0.2	21.0	73,3	5.5	0.0	0.0	50.3
Henshaw Cr.	626	0.2	33.9	63.6	2.4	0.0	0.0	65.8

				Ann	Group			
	Sample Size	3	4	5	6	7	8	% Fem
BETest (6.0" mesh)	130	12.3	83.8	3.8	0.0	0.0	0.0	53.1
MMTest (6.0" mesh)	252	10.3	85.7	4.0	0.0	0.0	0.0	56.0
Andreafsky R.	294	2.7	94.2	3.1	0.0	0.0	0.0	41.8
Otter Creek	25	48.0	52.0	0.0	0.0	0.0	0.0	36.0

^{*}Samples collected from carcasas.

	Year	3	4	Age Grou	6	7	8	% Fem
indreafsky R.	1984	0.2	12.6	49.8	35.7	1.7	0.0	26.
ilenantary in	1985	0.0	39.6	12 B	43.6	4.0	0.0	33.
	1986	0.0	22	69 B	218	6.2	0.0	23.
	1987 1988	0.3	4.7 27.8	29.5	83.7 26.8	15.6	0.0	56. 38.
	1989	0.0	5.3	71.8	212	1.7	0.0	13.
	1990	0.0	10.3	28.7 56.9	37.9 30.5	2.3	0.0	41. 33.
	1992	0.0	23.1	48.1	25.0	3.6	0.0	21.
	1993	0.4	16.9	38.7	41.8	2.3	0.0	29.
	1994 1995	0.0	8.0 35.0	38.7 15.7	34.5 47.5	1.7	0.2	35. 43.
	1996	1.2	6.6	74.1	13.9	4.2	0.0	41.
	1997	0.0	52.7	15.5	31.7	0.0	0.0	36
	1998 1999	0.0	16 B 34 5	71.4	11.1	0.8	0.0	29.
	2000	0.0	12.6	49.1	38,3	0.0	0.0	54
4-'01 avg.	2001	0.0	19.7	18,5 40.6	35.7	3.1	0.0	36.
or avg.		0,2	10.7	40.0	35.7	9,1	0.0	50.
nvik R.	1984	0.0	11.9	50,0	35.9	2.2	0.0	-41
	1985 1986	0,0	30.3 0.7	39.4	30.3	11.3	0,0	24 67
	1987	0,0	9.5	50.0 13.1	38.0 73.9	3.7	0.0	58
	1988	0.0	30.5	38.2	27.2	4.1	0.0	29
	1989 1990	0.3	263	49.1 26.0	43.5 43.8	2.9 3.8	0.0	40 37
	1991	0.0	10.3	55.0	31.7	2.9	0.0	41
	1992	0,0	9.5	38.1	50.8	1.6	0.0	41
	1993 1994	0.0	138	38.5 51.9	45,6 39.8	5.4	0.0	42
	1995	0.0	9.5	38 1	50.8	1.6	0.0	41
	1996 1997	0.0	9 9 25 0	55.4 30.6	24.4	9,9	0.0	35
	1998	0.3	14.7	59.9	23.9	1.2	0.0	32
	1999	0.0	9.3	42.5	48.1 52.7	0.0	0.0	37 40
	2001	0.0	11.1	30.1	53.0	5.7	0.0	38
4-'01 avg.		0.0	13.0	41.5	42.1	3,3	0.0	40.
hena R.	1984	0.0	11.6	47.7	30,8	9.8	0.0	41
	1985 1986	0.0	12 1 9.3	21.7 51.2	59.2 29.9	7,0 9,3	0.0	52 25
	1987	0.0	2.9	13.1	75.6	8.4	0.0	51
	1988	0.6	10,5	17.5	46.4	24.6	0.4	61
	1989 1990	0.3	23 8	30.2 25.7	54.9 45.7	10.4 3.8	0.0	46
	1991	0.0	8.3	55.8	28.5	7.4	0.0	31
	1992 1993	1.9 0,5	40.7 29.4	16.4	40.5	0.4	0,0	37
	1994	0.0	29.4	41.2	27.8 51.2	2.3	0.0	48
	1995	0.0	4.4	20.9	70.9	3.8	0,0	6
	1996 1997	0.3	6.2 37.2	13.4	23.5 48.0	23.9	0,0	31
	1998	0.0	4.0	72.4	18.4	4.8	0.0	4
	1999 2000	0.9	7.9 20.1	25.2 35.6	65.4 35.6	0.5 8,7	0.0	3
7143	2001	0.5	9.5	33,6	51.2	5.0	0.0	4
4-'01 avg.		0.4	13.6	33.8	44.7	7.4	0.0	45
alche R.	1984	0.0	6.9	38.6	40.8	11.4	0.2	4
	1985 1986	0.0	123	17.6 43.7	64.8 29.5	5,3 14,8	0.0	4
	1987	0.2	5.0	12.6	73.5	7.8	0.0	6
	1988	0.5	203	22.5 28.9	42.1 57.8	8.8	0.0	5
	1990	0.2	17.6	24.9	48.9	B.3	0.0	48
	1991	0.2	8.2	44.3	41.4	5.8	0.2	47
	1992 1993	0.9	30 8 28 0	28.6 39.1	38.2	1.1	0.0	2
	1994	0.6	27	39.1	52.9	4.8	0.0	4
	1995	0.0	136	20.6	62.8	3.1	0.0	56
	1996 1997	2.7	6.2	38.4	28,6	24.1	0.0	50
	1998	2.4	4.9	72.4	17,9	2.4	0.0	30
	1999	0.0	9.1	24.1	66.4	0.3	0.0	.5
	2000	0.0	10.4	48.6 33.9	24.4 52.1	3.1	0.0	4
			10.3	40.0	ME: I	36.1	W-W	-

Chinook Salmon

Subsistence

Catch Data

Yukon River District 1 Emmonak chinook salmon subsistence catch from 5.5" mesh gillnet, age and sex composition by stratum, and mean length (mm), 2001.

		3						-	Broo	d Year	and (Age Gr	oup)											
			19	998	19	997		19	196			19	95			19	194			19	993			
Sample	Sample		(1	1.1)	(1	.2)	(1.3)	(2	2.2)	(1	1.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	.6)	(2	.5)	Total	
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,	No.	Per.	No.	Per.
Total a	87	Males	0	0.0	8	9.2	32	36.8	0	0.0	22	25.3	0	0.0	3	3.4	0	0.0	0	0.0	0	0.0	65	74.7
		Females	0	0.0	0	0.0	6	6.9	0	0.0	14	16.1	0	0.0	2	2.3	0	0.0	0	0.0	0	0.0	22	25.3
		Subtotal	D	0.0	8	9.2	*38	43.7	0	0.0	36	41.4	0	0.0	5	5.7	0	0.0	0	0.0	0	0.0	87	100.0
Total b	111	No Sex	0	0.0	22	19.8	47	42.3	0	0.0	40	36.0	0	0.0	2	1.8	0	0.0	0	0.0	0	0.0	111	100.0
		Subtotal	0	0.0	22	19.8	47	42.3	0	0.0	40	36.0	0	0.0	2	1.8	0	0.0	0	0.0	0	0.0	111	100.0
Season Total	198	Males	0	0.0	8	4.0	32	16.2	0	0.0	22	11.1	0	0.0	3	1.5	0	0.0	0	0.0	0	0.0	65	32.8
		Females	0	0.0	0	0.0	6	3.0	0	0.0	14	7.1	0	0.0	2	1.0	0	0.0	0	0.0	0	0.0	22	11.1
		No Sex	0	0.0	22	11.1	47	23.7	0	0.0	40	20.2	0	0.0	2	1.0	0	0.0	0	0.0	0	0.0	111	56.1
		Total	0	0.0	30	15.2	85	42.9	0	0.0	76	38.4	0	0.0	7	3.5	0	0.0	0	0.0	0	0.0	198	100.0
Mean Length		Males	0	0.0	58	0.6	67	5.9	0	.0	83	2.0	0	.0	70	0.0	0	.0	0	.0	0	.0		
Std. Error			0	0.0	28	3.2	5	2.1	C	0.0	7	4.8	0	.0	59	5.3	0	0.0	0	0.0	0	.0		
Mean Length		Females	0	0.0	0	.0	70	11.7	C	.0	82	4.3	0	.0	86	2.5	0	.0	0	.0	0	.0		
Std. Error			0	0.0	0	.0	5	2.8	0	.0	4	4.8	0	.0	10	0.6	0	.0	0	.0	0	.0		

^a Samples collected included sex and length data,

^b Samples collected did not include sex and length data.

Yukon River District 1 Emmonak chinook salmon subsistence catch from 8.5" mesh gillnet, age and sex composition by stratum, and mean length (mm), 2001.

									Brood	Year	and (A	ge Gro	oup)											
			15	998	15	997		19	96			19	95			19	94			19	993		7	
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	2.2)		.4)	(2	2.3)	(1	.5)	(2	2.4)	(-	1.6)	(2	2.5)	Total	
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Total a	233	Males	0	0.0	4	1.7	21	9.0	0	0.0	97	41.5	0	0.0	12	5.1	0	0.0	0	0.0	0	0.0	134	57.3
		Females	0	0.0	0	0.0	11	4.7	0	0.0	80	34.2	0	0.0	8	3.4	1	0.4	0	0.0	0	0.0	100	42.7
		Subtotal	0	0.0	4	1.7	32	13.7	0	0.0	177	75.6	0	0.0	20	8.5	1	0.4	0	0.0	0	0.0	234	100.0
Total b	217	No Sex	0	0.0	2	0.9	26	12.0	0	0.0	166	76.5	0	0.0	23	10.6	0	0.0	0	0.0	0	0.0	217	100.0
		Subtotal	0	0.0	2	0.9	26	12.0	0	0.0	166	76.5	0	0.0	23	10.6	0	0.0	0	0.0	0	0.0	217	100.0
Season Total	450	Males	0	0.0	4	0.9	21	4.7	0	0.0	97	21.5	0	0.0	12	2.7	0	0.0	0	0.0	0	0.0	134	29.7
arean rate.		Females	0	0.0	0	0.0	11	2.4	0	0.0	80	17.7	0	0.0	8	1.8	1	0.2	0	0.0	0	0.0	100	22.2
		No Sex	0	0.0	2	0.4	26	5.8	0	0.0	166	36.8	0	0.0	23	5.1	0	0.0	0	0.0	0	0.0	217	48.1
		Total	0	0.0	6	1.3	58	12.9	0	0.0	343	76.1	0	0.0	43	9.5	1	0.2	0	0.0	0	0.0	451	100.0
Mean Length		Males	0	0.0	61	1.3	75	9.0	0	.0	84	5.9		0.0	90	4.2	.0	0.0	0	0.0	0	.0		
Std. Error			0	0.0	52	2.0	82	2.5	0	.0	60	0.6	C	0.0	86	8.8	C	0.0	0	0.0	0	0.0		
Mean Length		Females	0	0.0	0	0.0	76	3.6	0	.0	84	9.9	C	0.0	77.7	3.6	78	5.0	C	0.0		0.0		
Std. Error			0	0.0	0	.0	58	3.2	0	.0	5	1.2	- 0	0.0	80	0.2	. 0	0.0	C	0,0	0	.0		

⁸ Samples collected included sex and length data.

^b Samples collected did not include sex and length data.

Yukon River District 1 Emmonak chinook salmon subsistence catch from mixed mesh gillnet, age and sex composition by stratum, and mean length (mm), 2001.

									В	rood '	ear a	nd (Ag	je Gr	(quc										
			15	998	15	997		19	96			19	95			19	194			19	993			
Sample	Sample		(1	.1)	(1	.2)	(1.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Seasonal Total	45	Males	0	0.0	3	6.7	8	17.8	0	0.0	14	31.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	25	55.6
		Females	0	0.0	0	0.0	4	8.9	0	0.0	15	33.3	0	0.0	1	2.2	0	0.0	0	0.0	0	0.0	20	44.4
		Total	0	0.0	3	6.7	12	26.7	0	0.0	29	64.4	0	0.0	1	2.2	0	0.0	0	0.0	0	0.0	45	100.
Mean Length		Males	0	.0	58	3.0	76	9.0	0	,0	83	0.0	0	0.0	0	0.0	0	0.0	0	0.0	Ò	.0.		
Std. Error			0	0.0	2	3.0	2	3.0	0	0,0	1:	5.0	C	0.0	0	0.0	0	0.0	0	1.0	C	0.0		
Mean Length		Females	. 0	.0	0	.0	74	1.0	0	.0	82	1.0	0	0.0	81	5.0	0	0.0	C	0.0	.0	.0		
Std. Error			0	.0	0	.0	2	B.0	0	.0	13	2.0	0	0.0	0	0.0	0	0.0	0	0.0	0	.0		

										Brood	Year	and (Ag	e Gro	oup)										
			19	998	19	997		19	96			19	95			19	94			19	993			
Sample	Sample		(1.1)	(1	.2)	(1	1.3)	(2	2.2)	(*	.4)	(2	2.3)	(1	.5)	(2	(4)	(1	1.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jun 28-Jul 1	90	Males	0	0.0	2	2.2	21	23.3	0	0.0	27	30.0	2	2.2	1	1.1	0	0.0	0	0.0	0	0.0	53	58.9
		Females	0	0.0	1	1.1	3	3.4	0	0.0	25	27.8	0	0.0	7	7.8	1	1.1	0	0.0	0	0.0	37	41.1
		Subtotal	0	0.0	3	3.3	24	26.7	0	0.0	52	57.8	2	2.2	8	8.9	1	1.1	0	0.0	0	0.0	90	100.0
Jul 2-Jul 5	74	Males	0	0.0	0	0.0	5	6.8	0	0.0	25	33.8	0	0.0	2	2.7	0	0.0	0	0.0	0	0.0	32	43.2
		Females	0	0.0	2	2.7	14	18.9	0	0.0	24	32.4	0	0.0	2	2.7	0	0.0	0	0.0	0	0.0	42	56.8
		Subtotal	0	0.0	2	2.7	19	25.7	0	0.0	49	66.2	0	0.0	4	5.4	0	0.0	0	0.0	0	0.0	74	100.0
Seasonal Total	164	Males	0	0.0	2	1.2	26	15.8	0	0.0	52	31.7	2	1.2	3	1.8	0	0.0	0	0.0	0	0.0	85	51.8
		Females	0	0.0	3	1.8	17	10.4	0	0.0	49	29.9	0	0.0	9	5.5	1	0.6	0	0.0	0	0.0	79	48.2
		Total	0	0.0	5	3.0	43	26.2	0	0.0	101	61.6	2	1.2	12	7.3	1	0.6	0	0.0	0	0.0	164	100.0
Mean Length		Males	C	0.0	60	0.0	74	0.0	0	0.0	84	8.0	80	5.0	87	5.0	0	.0	0	0.0	0	0.0		
Std. Error			C	0.0	40	0.0	7	1.0	C	0.0	8	0.0	25	5.0	15	5.0	0	.0	C	0.0	C	0.0		
Mean Length		Females	0	0.0	55	3.0	75	2.0	0	0.0	85	1.0	0	.0	87	3.0	83	0.0	C	0.0	0	0.0		
Std. Error			0	0.0	5	.0	2	0.0	0	0.0	7	.0	0	.0	29	9.0	0	.0	C	0.0	C	0,0		

^a Samples collected from 8.25" set gillnet.

Yukon River District 4 Galena chinook salmon subsistence age and sex composition by stratum, and mean length (mm), 2001.^a

									Br	ood Y	ear a	nd (Ag	e Gro	up)										
			15	998	15	997		19	96			19	95			19	94			19	93			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	.3)	(1	.5)	(2	.4)	(1	.6)	(2	2.5)	7	Total
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Seasonal Total	39	Males	0	0.0	0	0.0	1	2.6	0	0.0	21	53.9	0	0.0	2	5.2	0	0.0	0	0.0	0	0.0	24	61.5
		Females	0	0.0	0	0.0	0	0.0	0	0.0	13	33.3	0	0.0	2	5.1	0	0.0	0	0.0	0	0.0	15	38.
		Total	0	0.0	0	0.0	1	2.6	0	0.0	34	87.2	0	0.0	4	10.3	0	0.0	0	0.0	0	0.0	39	100.
Mean Length		Males	0	.0	0	0.0	76	5.0	C	0.0	86	8.0	0	.0	89	5.0	0	.0	0	.0	0	0.0		
Std. Error			0	.0	0	0.0	0	.0	C	0.0	1:	2.0	0	.0	5	0.0	C	.0	0	0.0	C	0.0		
Mean Length		Females	0	.0	0	0.0	0	.0	0	0.0	87	2.0	0	.0	88	0.0	0	.0	0	.0	C	0.0		
Std. Error			0	.0	0	.0	0	.0	0	0,0	8	.0	0	.0	5	0.0	0	.0	0	0.0	C	0.0		

^a Samples collected from 8.5" set gillnet.

Yukon River District 4 Ruby chinook salmon subsistence age and sex composition by stratum, and mean length (mm), 2001.8

									Br	rood Y	ear ar	nd (Age	Grou	ıb)										
			15	998	13	997		19	96			19	95			19	194			19	993			
Sample	Sample		(1	.1)	(1.2)	(1	.3)	(2	2.2)	((.4)	(2	2.3)	(1	1.5)	(2	2.4)	(1	.6)	(2	2.5)	7	Total
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Seasonal Total	94	Males	1	1.1	19	20.2	33	35.1	0	0.0	25	26.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	78	83.0
		Females	0	0.0	0	0.0	1	1.1	0	0.0	12	12.8	0	0.0	3	3.2	0	0.0	0	0.0	0	0.0	16	17.0
		Total	1	1.1	19	20.2	34	36.2	0	0.0	37	39.4	0	0.0	3	3.2	0	0.0	0	0.0	0	0.0	94	100.0
Mean Length		Males	37	5.0	54	0.8	68	6.0	0	0.0	83	9.0	0	0.0	0	0.0	0	0.0	0	0.0	(0.0		
Std. Error			0	.0	9	0.0	1	1.0	C	0.0	1	1.0	0	.0	0	0.0	0	.0	0	0.0	C	0.0		
Mean Length		Females	0	.0	0	0.0	77	0.0	0	0.0	84	0.0	0	.0	85	5.0	0	0.0	0	0.0	C	0.0		
Std. Error			0	.0	0	0.0	0	0.0	C	0.0	1	7.0	0	0.0	30	0.0	0	0.0	0	0.0	(0.0		

^a Samples collected from fish wheels.

Yukon River District 5 chinook salmon subsistence age and sex composition by stratum, and mean length (mm), 2001. a

									B	rood Y	ear a	nd (Ag	je Gr	oup)										
			19	98	19	997		19	96			19	95			19	94			19	993			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	2.2)	(.4)	(2	(3)	(1	.5)	(2	2.4)	(1	.6)	(2	2.5)	Т	otal
Dates	Size	VIII 1	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Seasonal Total	147	Males	0	0.0	36	24.5	55	37.4	0	0.0	21	14.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	112	76.2
		Females	0	0.0	0	0.0	9	6.1	0	0.0	26	17.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	35	23.8
		Total	0	0.0	36	24.5	64	43.5	0	0.0	47	32.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	147	100.
Mean Length		Males	0	.0	57	0.0	67	6.0	C	0.0	78	4.0	0	.0	0	0.0	0	0.0	0	.0	0	0.0		
Std. Error			0	.0	5	.0	7	.0	C	0.0	1	6.0	0	.0	0	0.0	0	0.0	0	.0	0	0.0		
Mean Length		Females	0	.0	0	.0	76	5.0	o	0.0	83	8.0	0	.0	0	0.0	0	0.0	0	.0	0	0.0		
Std. Error			0	.0	0	.0	20	3.0	0	0.0	1	0.0	0	.0	0	0.0	0	.0	0	.0	0	0.0		

^a Samples collected from fish wheels.

Yukon River District 6 chinook salmon subsistence age and sex composition by stratum, and mean length (mm), 2001.^a

Sample Dates Seasonal Total			Brood Year and (Age Group)																					
			1998 (1.1)		1997 (1.2)			19	96)6		19	95			19	94	94		19	93	33		
	Sample Size						(1.3)		(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)		Total	
			No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
		Males	0	0.0	7	15.9	23	52.3	0	0.0	7	15.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	37	84.1
		Females	0	0.0	0	0.0	2	4.5	0	0.0	5	11.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	7	15.9
		Total	0	0.0	7	15.9	25	56.8	0	0.0	12	27.3	3 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	44	100.0
Mean Length		Males	0	0.0		559.0		705.0		0.0		829.0		0.0		0.0		0.0		0.0		0.0		
Std. Error			0	0.0	1	7.0	1	3.0	(0.0	2	5.0	(0.0	0	.0	(0.0	C	0.0	0	0,0		
Mean Length		Females	0	0.0	0	0.0	75	8.0	0	0.0	86	5.0	- (0.0	C	.0	C	0.0	C	0.0	C	0.0		
Std. Error			0	.0	(.0	3	3.0	- 0	0.0	1	4.0	(0.0	0	.0	0	0.0	C	0.0	0	0.0		

^a Samples collected from fish wheels.

Chinook Salmon

Test Fishing

Catch Data

Big Eddy chinook salmon 5.5" drift gillnet test fishing catch age and sex composition by stratum, and mean length (mm), 2001.

Sample Dates Seasonal Total			Brood Year and (Age Group)																					
			1998 (1.1)		1997 (1.2)		1996				1995				1994			1993						
	Sample Size						(1.3)			(2.2)		(1.4)		(2.3)		(1.5)		(2.4)		(1.6)		(2.5)		otal
			No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
		Males	0	0.0	16	39.0	8	19.5	0	0.0	8	19.5	0	0.0	1	2.4	0	0.0	0	0.0	0	0.0	33	80,5
		Females	0	0.0	0	0.0	0	0.0	0	0.0	8	19.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	8	19.5
		Total	0	0.0	16	39.0	8	19.5	0	0.0	16	16 39.0	0	0.0	1	2.4	0	0.0	0	0.0	0	0.0	41	100.0
Mean Length		Males	0.0		552.0		671.0		0.0		789.0		0.0		940.0		0.0		0.0		0.0			
Std. Error			0	0.0	8	.0	20	0.0	0	.0	1	3.0	0	0.0	C	0.0	0	.0	0	0.0	0	0.0		
Mean Length		Females	0	0.0	0.0		0.0		0.0		845.0		0.0		0.0		0.0		0.0		0.0			
Std. Error			0	0.0	0	.0	0	.0	0	.0	6	0.0	0	0.0	(0.0	0	.0	0	0.0	0	0.0		

Big Eddy chinook salmon 7.5" set gillnet test fishing catch age and sex composition by stratum, and mean length (mm), 2001.

									Bro	od Ye	ar an	d (Age	Gro	up)										
			19	998	19	997		19	96			19	95			19	94			19	93			
Sample	Sample		(1	.1)	(1	.2)	(1.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)	(2	(.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Seasonal Total	53	Males	0	0.0	0	0.0	21	39.6	0	0.0	11	20.7	0	0.0	2	3.8	0	0.0	0	0.0	0	0.0	34	64.2
		Females	0	0.0	0	0.0	1	1.9	0	0.0	17	32.1	0	0.0	1	1.9	0	0.0	0	0.0	0	0.0	19	35.8
		Total	0	0.0	0	0.0	22	41.5	0	0.0	28	52.8	0	0.0	3	5.7	0	0.0	0	0.0	0	0.0	53	100.0
Mean Length		Males	0	.0	0	.0	73	33.0	0	0.0	86	1.0		0.0	83	0.0	0	0.0	0	.0		0.0		
Std. Error			0	0,0	C	.0	1	1.0	0	0.0	1	9.0	(0.0	10	0.0	0	0.0	0	0.0	(0.0		
Mean Length		Females	0	.0	C	.0	70	05.0	0	0.0	83	8.0	0	0.0	78	0.0	0	0.0	0	.0		0.0		
Std. Error			0	.0	C	.0	(0.0	0	0.0	7	.0	0	0.0	0	.0	0	0.0	0	.0	(0.0		

Big Eddy chinook salmon 8.25" drift gillnet test fish catch age and sex composition by stratum, and mean length (mm), 2001.

									E	Brood '	Year a	nd (Ag	ge Gro	oup)										
			19	998	19	997		19	96			19	95			19	94			19	993		9. 4	
Sample	Sample		(1	.1)	(1	.2)	(1.3)	(2	2,2)	(1	.4)	(2	2.3)	(1	1.5)	(2	2.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jun 1-14	97	Males	0	0.0	1	1.0	20	20.6	0	0.0	33	34.0	1	1.0	5	5.2	1	1.0	0	0.0	0	0.0	61	62.9
		Females	0	0.0	0	0.0	1	1.0	0	0.0	32	33.0	0	0.0	0	0.0	3	3.1	0	0.0	0	0.0	36	37.1
		Subtotal	0	0.0	1	1.0	21	21.6	0	0.0	65	67.0	1	1.0	5	5.2	4	4.1	0	0.0	0	0.0	97	100.
Jun 15-22	91	Males	0	0.0	3	3.3	13	14.3	0	0.0	35	38.4	0	0.0	7	7.7	0	0.0	0	0.0	0	0.0	58	63.7
		Females	0	0.0	0	0.0	1	1.1	0	0.0	24	26.4	0	0.0	8	8.8	0	0.0	0	0.0	0	0.0	33	36.3
		Subtotal	0	0.0	3	3.3	14	15.4	0	0.0	59	64.8	0	0.0	15	16.5	0	0.0	0	0.0	0	0.0	91	100.0
Jun 23-Aug 6	97	Males	0	0.0	1	1.0	6	6.2	0	0.0	26	26.8	0	0.0	3	3.1	0	0.0	0	0.0	0	0.0	36	37.1
		Females	0	0.0	0	0.0	4	4.1	0	0.0	50	51.6	0	0.0	7	7.2	0	0.0	0	0.0	0	0.0	61	62.9
		Subtotal	0	0.0	1	1.0	10	10.3	0	0.0	76	78.4	0	0.0	10	10.3	0	0.0	0	0.0	0	0.0	97	100.0
Seasonal Total	285	Males	0	0.0	5	1.8	39	13.7	0	0.0	94	33.0	1	0.4	15	5.3	1	0.3	0	0.0	0	0.0	155	54.4
		Females	0	0.0	0	0.0	6	2.1	0	0.0	106	37.2	0	0.0	15	5.2	3	1.1	0	0.0	0	0.0	130	45.6
		Total	0	0.0	5	1.8	45	15.8	0	0.0	200	70.2	1	0.4	30	10.5	4	1.4	0	0.0	0	0.0	285	100.0
Mean Length		Males	0	.0	55	2.0	72	5.0	C	0.0	81	0.0	73	0.0	87	4.0	80	0.0	0	.0	0	.0		
Std. Error			0	.0	18	3.0	8	.0	C	0.0	6	.0	0	.0	12	2.0	0	0.0	0	.0	0	.0		
Mean Length		Females	0	.0	0	.0	78	7.0	C	0.0	83	5.0	0	.0	87	4.0	82	7.0	0	.0	0	.0		
Std. Error			0	.0	0	.0	24	4.0	C	0.0	4	.0	0	.0	10	0.0	14	4.0	0	.0	0	.0		

Big Eddy chinook salmon 8.5" set gillnet test fishing catch age and sex composition by stratum and mean length (mm), 2001.

									Е	Brood '	ear a	nd (Ag	e Gro	oup)										
			19	998	19	997		19	96			19	95			19	94			19	93			
Sample	Sample		(1	.1)	(1	.2)	(1	1.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)	(2	2.4)	((.6)	(2	2.5)	Т	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	7	No.		No.	Per.
Jun 8-13	100	Males	0	0.0	2	2.0	12	12.0	0	0.0	50	50.0	0	0.0	9	9.0	1	1.0	0	0.0	0	0.0	74	74.0
		Females	0	0.0	0	0.0	0	0.0	0	0.0	25	25.0	0	0.0	0	0.0	1	1.0	0	0.0	0	0.0	26	26.0
		Subtotal	0	0.0	2	2.0	12	12.0	0	0.0	75	75.0	0	0.0	9	9.0	2	2.0	0	0.0	0	0.0	100	
Jun 14-21	110	Males	0	0.0	0	0.0	11	10.0	0	0.0	48	43.6	0	0.0	1	0.9	0	0.0	0	0.0	0	0.0	60	54.5
	1.10	Females	0	0.0	0	0.0	2	1.8	0	0.0	43	39.1	0	0.0	5	4.6	0	0.0	0	0.0	0	0.0	50	45.5
		Subtotal	0	0.0	0	0.0	13	11.8	0	0.0	91	82.7	0	0.0	6	5.5	0	0.0	0	0.0	0	0.0		100.0
Jun 22-25	105	Males	0	0.0	1	1.0	10	9.5	0	0.0	29	27.6	0	0.0	5	4.7	0	0.0	0	0.0	0	0.0	45	42.9
area ea ea	100	Females	0	0.0	0	0.0	3	2.9	0	0.0	48	45.7	0	0.0	9	8.6	0	0.0	0	0.0	0	0.0	60	57.1
		Subtotal	0	0.0	1	1.0	13	12.4	0	0.0	77	73.3	0	0.0	14	13.3	0	0.0	0	0.0	0	0.0	105	100.0
Jun 26-Aug 14	109	Males	0	0.0	1	0.9	6	5.5	0	0.0	24	22.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	31	28.4
230-20-3-20-0	127	Females	0	0.0	0	0.0	2	1.8	0	0.0	65	59.7	0	0.0	11	10.1	0	0.0	0	0.0	0	0.0	78	71.6
		Subtotal	0	0.0	1	0.9	8	7.3	0	0.0	89	81.7	0	0.0	11	10.1	0	0.0	0	0.0	0	0.0	109	100.0
Seasonal Total	424	Males	0	0.0	4	0.9	39	9.2	0	0.0	151	35.6	0	0.0	15	3.5	1	0.3	0	0.0	0	0.0	210	49.5
		Females	0	0.0	0	0.0	7	1.6	0	0.0	181	42.7	0	0.0	25	5.9	1	0.2	0	0.0	0	0.0	214	50.5
		Total	0	0,0	4	0.9	46	10.8	0	0.0	332	78.3	0	0.0	40	9.4	2	0.5	0	0.0	0	0.0	424	100.0
Mean Length		Males	0	.0	56	0.0	75	6.0	C	0.0	84	2.0	0	.0	90	7.0	82	0.0	C	0.0	0	.0		
Std. Error			0	.0	38	8.0	8	1.0	C	0.0	4	.0	0	.0	2	2.0	C	.0	C	0.0	0	.0		
Mean Length		Females	0	.0	0	.0	83	4.0	C	0.0	86	3.0	0	.0	88	3.0	87	0.0	- 0	.0	0	.0		
Std. Error			0	.0	0	.0	11	8.0	C	0.0	3	.0	0	.0	10	0.0	0	.0	C	0.0	0	.0		

Middle Mouth chinook salmon 8.25" drift gillnet test fish catch age and sex composition by stratum, and mean length (mm), 2001.

									В	rood Y	'ear a	nd (Ag	e Gro	oup)										
			15	998	19	997		19	96			19	95			19	94			19	993	-		
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	.3)	(1	.5)	(2	.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,	No.	Per.								
Seasonal Total	117	Males	0	0.0	1	0.9	15	12.8	0	0.0	36	30.8	0	0.0	1	8.0	0	0.0	0	0.0	0	0.0	53	45.3
		Females	0	0.0	0	0.0	5	4.3	0	0.0	54	46.1	0	0.0	5	4.3	0	0.0	0	0.0	0	0.0	64	54.7
		Total	0	0.0	1	0.9	20	17.1	0	0.0	90	76.9	0	0.0	6	5.1	0	0.0	0	0.0	0	0.0	117	100.0
Mean Length		Males	0	0.0	54	5.0	76	6.0	C	0.0	81	9.0	0	,0	86	0.0	0	.0	0	0.0	0	0.0		
Std. Error			0	0.0	.0	.0	1:	3.0	C	0.0	8	.0	0	.0	0	0.0	0	.0	0	0.0	0	0.0		
Mean Length		Females	0	.0	0	.0	81	7.0	0	0.0	85	2.0	0	.0	88	9.0	0	.0	0	.0	0	0.0		
Std. Error			0	.0	0	.0	30	0.0	0	0.0	6	.0	0	.0	22	2.0	0	.0	0	.0	0	0.0		

										Brood	Year a	and (Ag	ge Gr	oup)										
			1	998	15	997		19	96				95			19	994			19	993			
Sample	Sample		(1.1)	(.2)	(1	.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)	(2	2.4)	(1.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.					No.	Per.	No.	-	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jun 11-20	129	Males	0	0.0	1	0.8	13	10.1	0	0.0	62	48.0	0	0.0	4	3.1	1	0.8	0	0.0	0	0.0	81	62.8
		Females	0	0.0	0	0.0	3	2.3	0	0.0	41	31.8	0	0.0	4	3.1	0	0.0	0	0.0	0	0.0	48	37.2
		Subtotal	0	0.0	- 1	8.0	16	12.4	0	0.0	103	79.8	0	0.0	8	6.2	1	0.8	0	0.0	0	0.0	129	100.0
Jun 21-24	117	Males	0	0.0	0	0.0	8	6.8	0	0.0	27	23.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	35	29.9
		Females	0	0.0	0	0.0	3	2.6	0	0.0	73	62.4	0	0.0	5	4.3	1	0.9	0	0.0	0	0.0	82	70.1
		Subtotal	0	0.0	0	0.0	11	9.4	0	0.0	100	85.5	0	0.0	5	4.3	1	0.9	0	0.0	0	0.0	117	100.0
Jun 25-29	131	Males	0	0.0	0	0.0	17	13.0	0	0.0	30	22.9	0	0.0	3	2.3	0	0.0	0	0.0	0	0.0	50	38.2
		Females	0	0.0	0	0.0	4	3.0	0	0.0	69	52.7	0	0.0	8	6.1	0	0.0	0	0.0	0	0.0	81	61.8
		Subtotal	0	0.0	0	0.0	21	16.0	0	0.0	99	75.6	0	0.0	11	8.4	0	0.0	0	0.0	0	0.0	131	100.0
Jun 30-Jul 4	98	Males	0	0.0	0	0.0	6	6.1	0	0.0	26	26.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	32	32.7
		Females	0	0.0	0	0.0	3	3.1	0	0.0	57	58.2	0	0.0	5	5.1	1	1.0	0	0.0	0	0.0	66	67.3
		Subtotal	0	0.0	0	0.0	9	9.2	0	0.0	83	84.7	0	0.0	5	5.1	1	1.0	0	0.0	0	0.0	98	100.0
Jul 5-15	121	Males	0	0.0	0	0.0	1	0.8	0	0.0	30	24.8	0	0.0	2	1.7	0	0.0	0	0.0	0	0.0	33	27.3
		Females	0	0.0	0	0.0	4	3.3	0	0.0	76	62.8	0	0.0	8	6.6	0	0.0	0	0.0	0	0.0	88	72.7
		Subtotal	0	0.0	0	0.0	5	4.1	0	0.0	106	87.6	0	0.0	10	8.3	0	0.0	0	0.0	0	0.0	121	100.0
Seasonal Tota	596	Males	0	0.0	1	0.2	45	7.5	0	0.0	175	29.4	0	0.0	9	1.5	1	0.2	0	0.0	0	0.0	231	38.8
		Females	0	0.0	0	0.0	17	2.9	0	0.0	316	53.0	0	0.0	30	5.0	2	0.3	0	0.0	0	0.0	365	61.2
		Total	0	0.0	1	0.2	62	10.4	0	0.0	491	82.4	0	0.0	39	6.5	3	0.5	0	0.0	0	0.0	596	100.0
Mean Length		Males	(0.0		5.0	75	6.0	0	0.0	83	7.0	C	0.0		8.0		5.0		0.0		0.0		
Std. Error			(0.0	0	.0	10	0.0	C	0.0	4	0	(0.0	16	3.0	0	.0	C	0.0	0	1.0		
Mean Length		Females		0.0		.0		3.0		0.0		6.0		0.0		7.0		3.0		0.0		.0		
Std. Error			(0.0	0	.0	9	.0	C	0.0	2	.0	(0,0	8	.0	0	.0	(0.0	0	.0		

			1	998	15	997		19		car ar	id (ng	e Grou	95			10	94			10	93			
Sample	Sample			1.1)		1.2)	(1	.3)	0.5	(.2)	(1	.4)	-	(3)	(1	.5)		(.4)	(1	.6)		2.5)	Gran	d Tota
Dates	Size		No.	100	No.		No.	Per.	No.	Per.	No.	Per.	No.	Per.		Per.	No.	Per.	No.	Per.	No.	Per.	No.	200
Jun 11-Jun 18	176	Males	0	0.0	0	0.0	15	8.5	0	0.0	56	31.8	0	0.0	6	3.4	0	0.0	0	0.0	0	0.0	77	43.8
Juli 11-Juli 10	170	Females	0	0.0	0	0.0	15	8.5	0	0.0	76	43.2	0	0.0	8	4.5	0	0.0	0	0.0	0	0.0	99	56.3
		Subtotal	0	0.0	0	0.0	30	17.0	0	0.0	132	75.0	0	0.0	14	8.0	0	0.0	0	0.0	0	0.0	176	100.0
Jun 19-Jun 24	210	Males	0	0.0	1	0.5	25	11.9	0	0.0	75	35.7	0	0.0	8	3.8	0	0.0	0	0.0	0	0.0	109	51.9
		Females	0	0.0	0	0.0	9	4.3	0	0.0	83	39.5	0	0.0	9	4.3	0	0,0	0	0.0	0	0.0	101	48.1
		Subtotal	0	0.0	1	0.5	34	16.2	0	0.0	158	75.2	0	0.0	17	8.1	0	0.0	0	0.0	0	0.0	210	100.0
Jun 25-Jun 28	222	Males	0	0.0	2	0.9	27	12.2	0	0.0	87	39.2	0	0.0	9	4.1	0	0.0	0	0.0	0	0.0	125	56.3
		Females	0	0.0	0	0.0	8	3.6	0	0.0	80	36.0	0	0.0	9	4.1	0	0.0	0	0.0	0	0.0	97	43.7
		Subtotal	0	0.0	2	0.9	35	15.8	0	0.0	167	75.2	0	0.0	18	8.1	0	0.0	0	0.0	0	0.0	222	100.0
Jun 29-Jul 02	210	Males	0	0.0	3	1.4	16	7.6	0	0.0	67	31.9	0	0,0	6	2.9	0	0.0	0	0.0	0	0.0	92	43.8
		Females	0	0.0	0	0.0	8	3.8	0	0.0	99	47.1	0	0.0	11	5.2	0	0.0	0	0.0	0	0.0	118	56.2
		Subtotal	0	0.0	3	1.4	24	11.4	0	0.0	166	79.0	0	0.0	17	8.1	0	0.0	0	0.0	0	0.0	210	100.0
Jul 03-Jul 17	160	Males	0	0.0	2	1.3	9	5.6	0	0.0	47	29.4	0	0.0	4	2.5	0	0.0	0	0.0	0	0.0	62	38.8
		Females	0	0.0	0	0.0	5	3.1	0	0.0	85	53.1	0	0.0	8	5.0	0	0.0	0	0.0	0	0.0	98	61.3
		Subtotal	0	0.0	2	1.3	14	8.8	0	0.0	132	82.5	0	0.0	12	7.5	0	0.0	0	0.0	0	0.0	160	100.0
Season Total	978	Males	0	0.0	8	0.8	92	9.4	0	0.0	332	33.9	0	0.0	33	3.4	0	0.0	0	0.0	0	0.0	465	47.5
		Females	0	0.0	0	0.0	45	4.6	0	0.0	423	43.3	0	0.0	45	4.6	0	0.0	0	0.0	0	0.0	513	52.5
		Total	0	0.0	8	8.0	137	14.0	0	0.0	755	77.2	0	0.0	78	8.0	0	0.0	0	0.0	0	0.0	978	100.0
Mean Length		Males	0	0.0	52	3.1	73	0.1	0	.0	83	6.1	0	.0		5.0		.0		.0		0.0		
Std. Error			C	0.0	48	3.6	69	9.2	0	.0	58	3.1	0	.0	47	7.3	0	.0	0	.0	0	0.0		
Mean Length		Females	(0.0	0	0.0	76	1.2	0	.0	83	2.4		.0		9.8		.0		.0		0.0		
Std. Error			(0	0.0	0	.0	- 58	3.6	0	.0	50	0.5	0	.0	49	9.6	0	.0	0	.0	0	0.0		

			19	998	19	997			96	Year a	- 1 3		95			19	94	_		19	993			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)		2.4)	(1	1.6)		2.5)	Gran	d Tota
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Jun 12-Jun 21	178	Males	0	0.0	0	0.0	20	11.2	0	0.0	68	38.2	0	0.0	2	1.1	0	0.0	0	0.0	0	0.0	90	50.
		Females	0	0.0	0	0.0	12	6.7	0	0.0	73	41.0	0	0.0	3	1.7	0	0.0	0	0.0	0	0.0	88	49.
		Subtotal	0	0.0	0	0.0	32	18.0	0	0.0	141	79.2	0	0.0	5	2.8	0	0.0	0	0.0	0	0.0	178	100
Jun 22-Jun 26	200	Males	0	0.0	10	5.0	36	18.0	0	0.0	61	30.5	0	0.0	4	2.0	0	0.0	0	0.0	0	0.0	111	55.
		Females	0	0.0	0	0.0	10	5.0	0	0.0	71	35.5	0	0.0	7	3.5	1	0.5	0	0.0	0	0.0	89	44.
		Subtotal	0	0.0	10	5.0	46	23.0	0	0.0	132	66.0	0	0.0	11	5.5	1	0.5	0	0.0	0	0.0	200	100
Jun 27-Jul 03	193	Males	0	0.0	3	1.6	22	11.4	0	0.0	74	38.3	0	0.0	4	2.1	0	0.0	0	0.0	0	0.0	103	53.
		Females	0	0.0	0	0.0	4	2.1	0	0.0	77	39.9	0	0.0	9	4.7	0	0.0	0	0.0	0	0.0	90	46.
=		Subtotal	0	0.0	3	1.6	26	13.5	0	0.0	151	78.2	0	0.0	13	6.7	0	0.0	0	0.0	0	0.0	193	100
Jul 04-Jul 20	187	Males	0	0.0	1	0.5	19	10.2	0	0.0	42	22.5	0	0.0	1	0.5	0	0.0	0	0.0	0	0.0	63	33.
		Females	0	0.0	0	0.0	7	3.7	0	0.0	109	58.3	0	0.0	8	4.3	0	0.0	0	0.0	0	0.0	124	66.
		Subtotal	0	0.0	1	0.5	26	13.9	0	0.0	151	80.7	0	0.0	9	4.8	0	0.0	0	0.0	0	0.0	187	100
Season Total	758	Males	0	0.0	14	1.8	97	12.8	0	0.0	245	32.3	0	0.0	11	1.5	0	0.0	0	0.0	0	0.0	367	48.
		Females	0	0.0	0	0.0	33	4.4	0	0.0	330	43.5	0	0.0	27	3.6	1	0.1	0	0.0	0	0.0	391	51.
		Total	0	0.0	14	1.8	130	17.2	0	0.0	575	75.9	0	0.0	38	5.0	1	0.1	0	0.0	0	0.0	758	100.
Mean Length		Males	0	.0	55	2.9	72	5.5	C	0.0	82	2.2	0	.0	88	0.9	0	.0	0	0.0	C	0.0		
Std. Error			0	.0	37	7.9	6	1.3	C	0.0	6	1.7	0	.0	5	2.2	0	.0	0	0.0	, 0	0.0		
Mean Length		Females	0	.0		.0		0.8		0.0		8.6		.0	1.00	0.6		5.0		0.0		0.0		
Std. Error			0	.0	0	.0	55	5.7	C	0.0	42	2.8	0	.0	39	9.7	0	.0	0	0.0	C	0.0		

Yukon River Pilot Station Sonar chinook salmon test fishing catch age and sex composition by mesh size, 2001^{ab}

			_							ar and	(Ag	ge Grou		_						-				
Wanta In	0.000			998		997	1	19		101		19			74		94		- 15	19	93		67.7	
Sample Dates	Sample Size			Per.		.2) Per.	No.	.3) Per	No.	2.2) Per.		(1.4) o. Per.	No.	2.3) Per.	No.	.5) Per.	No.	2.4) Per.	100	Per.		West of the second	No.	Per.
6-Jun - 11-Sept Mesh Size 2.75"	10	Males Females Subtotal	0 0	0.0 0.0	0 2	20.0 0.0 20.0	1 1 2	10.0 10.0 20.0	0	0.0	3 6	30.0	0 0	0.0	0	0.0	0 0	0.0	0	0.0	1	0 0.0 0 0.0 0 0.0	6 4 10	60.0 40.0 100.0
Mean Length Std. Error		Males		0.0	57	7.5	70	0.00		0.0	1	868.3 94.4		0.0	0	.0	(0.0	(0.0		0.0		
Mean Length Std. Error		Females		0.0		0.0		0.0		0.0		738.3 100.7		0.0		.0		0,0		0.0		0.0		
6-Jun - 11-Sept Mesh Size 4.0"	31	Males Females Subtotal	0	3.2 0.0 3.2	0 4	12.9 0.0 12.9	5 9	12.9 16.1 29.0	0 0	0.0	11	0 32.3	0	0.0	0	0.0	0	0.0	0	0.0		0 0.0 0 0.0 0 0.0	16 15 31	51.6 48.4 100.0
Mean Length Std. Error		Males		0.0		3.8 5.3		1.8		0.0		835.7 106.4		0.0		0.0		0.0		0.0		0.0		
Mean Length Std. Error		Females		0.0		0.0		3.2		0.0		797.0 72.0		0.0		0.0		0.0		0.0		0.0		
6-Jun - 11-Sept Mesh Size 5.25"	108	Males Females Subtotal	0	0.0 0.0 0.0	12 2 14	11.1 1.9 13.0	8 31 39	7.4 28.7 36.1	0 0	0.0 0.0 0.0	3	0 27,8	0 2	1.9 0.0 1.9	2 2	0.0 1.9 1.9	0 0	0.0 0.0 0.0	0	0.0		0 0.0 0 0.0 0 0.0	43 65 108	39.8 60.2 100.0
Mean Length Std. Error		Males		0.0		7.9 8.2	- 13	3.1 5.8		0.0		802.9 68.7		0.0		5.0 1.9		0.0		0.0		0.0		
Mean Length Std. Error		Females		0.0		0.0 4.1		23.2 5.7		0.0		843.0 58.3		0.0		7.5 4.2		0.0		0.0		0.0		
6-Jun - 11-Sept Mesh Size 5.75"	3	Males Females Subtotal	0 0	0 0.0 0 0.0 0 0.0		0.0	0	33.3 0.0 33.3	0	0.0		0.0 2 66.7 2 66.7	0	0.0	0	0.0	0	0.0	0	0.0		0 0.0 0 0.0 0 0.0	2 3	33.3 66.7 100.0
Mean Length Std. Error		Males		0.0		0.0		0.0 0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		
Mean Length Std. Error		Females		0.0		0.0		0.0		0.0		852.5 109.8		0.0		0.0		0.0		0.0		0.0		
6-Jun - 11-Sept Mesh Size 6.50"	144	Males Females Subtotal	0	0.7 0.0 0.7	9 3 12	6.3 2.1 8.3 7.8	19 37 56	13.2 25.7 38.9	0	0.0 0.0 0.0	4	3 16.0 5 31.3 8 47.2 856.1		0.0	5 7	1.4 3.5 4.9	0	0.0 0.0 0.0		0.0 0.0 0.0		0 0.0 0 0.0 0 0.0	54 90 144	37.5 62.5 100.0
Mean Length Std. Error		Males	(0,0	4	1.0	6	2.8	- 0	0.0		89.0	(0.0	8	7.2	1	0.0		0.0		0.0		
Mean Length Std. Error	500	Females	- (0.0	2	8,3 0,2	4	9.3		0.0		803.3 63.8	- (0.0	1	93.0		0.0		0.0	_	0.0	-	
6-Jun - 11-Sept Mesh Size 7.50"	129	Males Females Subtotal	0	0.0	1 3	1.6 0.8 2.3	14 29 43	22.5 33.3	0	0.0	5	7 20.9 60 38.8 7 59.7	0 0	0.0	3 6	2.3 2.3 4.7	0 0	0.0	0	0.0		0 0.0 0 0.0 0 0.0	46 83 129	35.7 64.3 100.0
Mean Length Std. Error		Males	(0.0	2	8.3	5	03,9 6.8	- 1	0.0		839,7 53,0	- 1	0.0	5	25,0 8.9		0.0		0.0		0.0		
Mean Length Std. Error	100	Females	Ţ	0.0	(0.0	7	42.9 5.2		0.0		809.6 56.2	- 1	0.0	3	73.3		0.0		0.0		0.0	74.6	
6-Jun - 11-Sept Mesh Size 8.50"	109	Males Females Subtotal	0 0	0.0	0	0.0	13 16 29	14.7	D	0.0	5	6 23.9 3 48.6 9 72.5	0	0.0	1	0.0	0	0.0	D	0.0	1	0 0.0 0 0.0 0 0.0	70 109	35.8 64.2 100.0
Mean Length Std. Error		Males	-	0.0	- (0.0	7	43.5 6.7		0.0		835.4 65.8	1	0.0	-	0.0		0.0		0.0		0.0		
Mean Length Std. Error		Females		0.0		0.0		53.4 6.6		0.0		838.8 49.6		0.0		0.0		0.0		0.0		0.0		
Season Total	534	Males Females Total	0 2	0.4	29 6 35	5,4 1.1 6,6	119	11.2 22.3 33.5	0	0.0	1	07 20.0 93 36.1 00 56.2	0	0.4	11	0.9 2.1 3.0	0	0.0	0	0.0)	0 0.0 0 0.0 0 0.0	205 329 534	
Mean Length Std. Error		Males	46	50.0 55.6		6,2	7	00.1		0.0		835.5 73.4		0.0	8	80.0		0.0		0.0		0.0		
Mean Length Std. Error		Females		0.0		9.0		26.6 5.4		0.0		820.0 61.4		0.0		83.6 80.6		0.0		0.0		0.0 0.0		

The Pilot Station sonar sample is not weighted by catch size by mesh and therfore they do not reflect the total run passage by Pilot Station.

^b Mesh sizes were switched for fall chum and chinook salmon caught during the fall season are not included in this table.

								В	rood \	ear ar	nd (Ag	e Grou	p)											
			11	998	19	397		19	96			19	95			19	194			19	993			
Sample	Sample		(1.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	1.6)	(2	2.5)	Gran	d Tota
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Sheep Rock	218	Males	0	0.0	23	10.6	79	36.2	0	0.0	53	24.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	155	71.1
		Females	0	0.0	0	0.0	3	1.4	0	0.0	54	24.8	0	0.0	6	2.8	0	0.0	0	0.0	0	0.0	63	28.9
		Subtotal	0	0.0	23	10.6	82	37.6	0	0.0	107	49.1	0	0.0	6	2.8	0	0.0	0	0.0	0	0.0	218	100.0
White Rock	417	Males	0	0.0	42	10.1	187	44.8	0	0.0	103	24.7	0	0.0	4	1.0	0	0.0	0	0.0	0	0.0	336	80.6
		Females	0	0.0	0	0.0	12	2.9	0	0.0	57	13.7	0	0.0	12	2.9	0	0.0	0	0.0	0	0.0	81	19.4
		Subtotal	0	0.0	42	10.1	199	47.7	0	0.0	160	38.4	0	0.0	16	3.8	0	0.0	0	0.0	0	0.0	417	100.0
Season Total	635	Males	0	0.0	65	10.2	266	41.9	0	0.0	156	24.6	0	0.0	4	0.6	0	0.0	0	0.0	0	0.0	491	77.3
		Females	0	0.0	0	0.0	15	2.4	0	0.0	111	17.5	0	0.0	18	2.8	0	0.0	0	0.0	0	0.0	144	22.7
		Total	0	0.0	65	10.2	281	44.3	0	0.0	267	42.0	0	0.0	22	3.5	0	0.0	0	0.0	0	0.0	635	100.0
Mean Length		Males		0.0	58	8.6	73	9.3	0	0.0	84	9.1	0	0.0	93	0.0	0	.0	C	0.0	0	0.0		
Std. Error				0.0	4	4.1	5	4.5	0	0.0	68	3.4	0	0.0	80	6.8	0	.0	C	0.0	0	0.0		
Mean Length		Females		0.0	0	.0	78	8.0	0	.0	87	5.9	0	0.0	92	3.9	0	.0	C	0.0	C	0.0		
Std. Error			C	0.0	0	.0	10	0.5	0	.0	6	1.1	0	.0	-53	3.8	0	.0	0	0.0	C	0.0		

Chinook Salmon

Escapement

Data

Andreafsky River chinook salmon escapement age and sex composition by stratum, and mean length (mm), 2001.

										rood Y	ear a	nd (Ag	e Gro	up)										
			1	998	19	997		19	96			19	95			19	94			19	993			
Sample	Sample		(1	1.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 16-Jul 25	72	Males	0	0.0	13	18.1	9	12.5	0	0.0	6	8.3	0	0.0	1	1.4	0	0.0	0	0.0	0	0.0	29	40.3
		Females	0	0.0	0	0.0	3	4.2	0	0.0	38	52.8	0	0.0	2	2.8	0	0.0	0	0.0	0	0.0	43	59.7
		Subtotal	0	0.0	13	18.1	12	16.7	0	0.0	44	61.1	0	0.0	3	4.2	_ 0	0.0	0	0.0	0	0.0	72	100.0
Jul 27-Sept 15	52	Males	0	0.0	5	9.6	6	11.6	0	0.0	5	9.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	16	30.8
		Females	0	0.0	0	0.0	5	9.6	0	0.0	31	59.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	36	69.2
		Subtotal	0	0.0	5	9.6	11	21.2	0	0.0	36	69.2	0	0.0	0	0.0	0	0.0	0	0,0	0	0.0	52	100.0
Seasonal Total	124	Males	0	0.0	18	14.5	15	12.1	0	0.0	11	8.9	0	0.0	1	0,8	0	0.0	0	0.0	0	0.0	45	36.3
		Females	0	0.0	0	0.0	8	6.4	0	0.0	69	55.6	0	0.0	2	1.6	0	0.0	0	0.0	0	0.0	79	63.7
		Total	0	0.0	18	14.5	23	18.5	0	0.0	80	64.5	0	0.0	3	2.4	0	0.0	0	0.0	0	0.0	124	100.0
Mean Length		Males	0	0.0	52	4.0	68	9.0	0	0.0	79	8.0	0	.0	C	0.0	0	0.0	C	0.0	0	0.0		
Std. Error			C	0.0	16	6.0	1	5.0	(0,0	1	8.0	0	0.0	C	0.0	0	0.0	0	0.0	0	0.0		
Mean Length		Females		0.0	0	.0	82	1.0		0.0	86	6.0	0	.0	88	5.0	0	0.0	0	0.0	0	0.0		
Std. Error			C	0.0	0	.0	13	3.0		0.0	6	.0	0	.0	3	0.0	0	0.0	0	0.0	0	.0		

Anvik River chinook salmon escapement age and sex composition by stratum, and mean length (mm), 2001.^a

									Bro	od Ye	ar an	d (Age	Gro	up)										
			15	998	15	997		19	96			19	95			19	94			19	993			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	.3)	(1	.5)	(2	.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Seasonal Total	332	Males	0	0.0	36	10.8	90	27.1	0	0.0	74	22.3	0	0.0	5	1.5	0	0.0	0	0.0	0	0.0	205	61.7
		Females	0	0.0	1	0.3	10	3.0	0	0.0	102	30.7	0	0.0	14	4.2	0	0.0	0	0.0	0	0.0	127	38.3
		Total	0	0.0	37	11.1	100	30.1	0	0.0	176	53.0	0	0.0	19	5.7	0	0.0	0	0.0	0	0.0	332	100.
Mean Length		Males	0	0.0	54	7.0	70	3.0	:0	0.0	80	4.0	0	.0	87	0.0	0	0.0	0	.0	C	0.0		
Std. Error			0	0.0	5	6.0	7	.0	0	0.0	7	.0	0	.0	30	0.0	0	.0	0	,0	0	0.0		
Mean Length		Females	0	0.0	54	5.0	77	9.0	0	0.0	83	7.0	0	.0	87	9.0	0	.0	0	.0	C	0.0		
Std. Error			0	.0	0	0.0	23	3.0	0	0.0	5	.0	0	.0	13	3.0	0	.0	0	.0	C	0.0		

^a Data refers to carcass and beach seined samples.

Beaver chinook salmon catch age and sex composition by statum, and mean length (mm), 2001.

									В	rood \	ear a	ind (Ag	e Gro	oup)										
			19	998	19	997		19	96			19	95			19	94			19	93			
Sample	Sample		(1	.1)	(1	1.2)	(1	.3)	(2	2.2)	(1.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Seasonal Total	8	Males	0	0.0	1	12.5	5	62.5	0	0.0	1	12.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	7	87.5
		Females	0	0.0	0	0.0	0	0.0	0	0.0	1	12.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	12.5
		Total	0	0.0	-1	12.5	5	62.5	0	0.0	2	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	8	100.0
Mean Length		Males	0	0.0	59	0.80	73	6.0	0	0.0	87	8.0	0	0.0	0	0.0	0	0.0	C	0.0	C	0.0		
Std. Error			0	0.0	C	0.0	37	7.0	C	0.0	(0.0	0	0.0	0	0.0	0	0.0	0	0.0	C	0.0		
Mean Length		Females	0	0.0	0	0.0	0	.0	0	0.0	84	14.0	C	0.0	Ó	0.0	0	0.0	0	0.0	0	0.0		
Std. Error			0	0.0	0	0.0	0	.0	0	.0		0.0	0	0.0	0	.0	0	0.0	0	0.0	0	0.0		

Chatanika River chinook salmon escapement age and sex composition by stratum, 2001.^a

									В	rood \	ear a	nd (Ag	ge Gro	oup)										
			19	998	19	97		19	96			19	95			19	194			19	93			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	.2)	(1	.4)	(2	.3)	(*	.5)	(2	.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Seasonal Total	35	Males	0	0.0	3	8.6	8	22.9	0	0.0	6	17.1	0	0.0	1	2.9	0	0.0	0	0.0	0	0.0	18	51.4
		Females	0	0.0	0	0.0	2	5.7	0	0.0	14	40.0	0	0.0	1	2.9	0	0.0	0	0.0	0	0.0	17	48.6
		Total	0	0.0	3	8.6	10	28.6	0	0.0	20	57.1	0	0.0	2	5.7	0	0.0	0	0.0	0	0.0	35	100.

^a Data refers to carcass samples only.

Chena River chinook salmon escapement age and sex composition by stratum, 2001.^a

									В	rood Y	ear ar	nd (Ag	e Gro	up)										
			19	998	19	97		19	96	-		19	95			19	194			19	93			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	.2)	(1	.4)	(2	.3)	(1	.5)	(2	.4)	(1	.6)	(2	.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Seasonal Total	521	Males	3	0.6	45	8.6	135	25.9	0	0.0	103	19.8	0	0.0	6	1.2	0	0.0	0	0.0	0	0.0	292	56.
		Females	0	0.0	5	1.0	40	7.7	0	0.0	164	31.5	0	0.0	20	3.8	0	0.0	0	0.0	0	0.0	229	44
		Total	3	0.6	50	9.6	175	33.6	0	0.0	267	51.2	0	0.0	26	5.0	0	0.0	0	0.0	0	0.0	521	100

^a Data refers to carcass samples only.

									В	rood Y	ear a	nd (Ag	e Gro	up)										
			19	998	19	997		19	96			19	95			19	94			19	93			
Sample	Sample		(1	1.1)	(1	.2)	(1	.3)	(2	.2)	(1	.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Jul 9-Jul 17	173	Males	0	0.0	38	22.0	44	25.4	0	0.0	40	23.1	0	0.0	1	0.6	0	0.0	0	0.0	0	0.0	123	71.
		Females	0	0.0	0	0.0	9	5.2	0	0.0	40	23.1	0	0.0	1	0.6	0	0.0	0	0.0	0	0.0	50	28.9
		Subtotal	0	0.0	38	22.0	53	30.6	0	0.0	80	46.2	0	0.0	2	1.2	0	0.0	0	0.0	0	0.0	173	100.
Jul 18- Jul 26	175	Males	0	0.0	38	21.7	33	18.8	0	0.0	32	18.3	0	0.0	2	1.1	0	0.0	0	0.0	0	0.0	105	60.0
ar respectively		Females	0	0.0	0	0.0	5	2.9	0	0.0	58	33.1	0	0.0	7	4.0	0	0.0	0	0.0	0	0.0	70	40.0
		Subtotal	0	0.0	38	21.7	38	21.7	0	0.0	90	51.4	0	0.0	9	5.1	0	0.0	0	0.0	0	0.0	175	100.
Jul 27-Jul 31	164	Males	1	0.6	17	10.4	14	8.5	0	0.0	15	9.1	0	0.0	1	0.6	0	0.0	0	0.0	0	0.0	48	29.3
		Females	0	0.0	0	0.0	11	6.7	0	0.0	100	61.0	0	0.0	5	3.1	0	0.0	0	0.0	0	0.0	116	70.7
		Subtotal	1	0.6	17	10.4	25	15.2	0	0.0	115	70.1	0	0.0	6	3.7	0	0.0	0	0.0	0	0.0	164	100.
Aug 1-Aug 14	124	Males	0	0.0	13	10.5	18	14.5	0	0.0	16	12.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	47	37.9
		Females	0	0.0	0	0.0	5	4.0	0	0.0	71	57.3	0	0.0	1	0.8	0	0.0	0	0.0	0	0.0	77	62.
		Subtotal	0	0.0	13	10.5	23	18.5	0	0.0	87	70.2	0	0.0	1	0.8	0	0.0	0	0.0	0	0.0	124	100.
Seasonal Total	636	Males	1	0.2	106	16.7	109	17.2	Ö	0.0	103	16.2	0	0.0	4	0.6	0	0.0	0	0.0	0	0.0	323	50.8
		Females	0	0.0	0	0.0	30	4.7	0	0.0	269	42.3	0	0.0	14	2.2	0	0.0	0	0.0	0	0.0	313	49.2
		Total	1	0.2	106	16.7	139	21,9	0	0.0	372	58.5	0	0.0	18	2.8	0	0.0	0	0.0	0	0.0	636	100.
Mean Length		Males	C	0.0	52	8.0	69	3.0	.0	.0	80	9.0	.0	.0	91	0.0	0	.0	0	0.0	0	.0		
Std. Error			C	0.0	4	.0	6	0.0	0	.0	6	.0	0	.0	0	.0	0	0.0	0	.0	0	.0		
Mean Length		Females	C	0.0	0	.0	80	9.0	0	.0	84	8.0	.0	.0	87	7.0	0	0.0	0	.0	0	.0		
Std. Error			0	0.0	0	.0	1:	2.0	0	.0	3	.0	0	.0	10	0.0	0	.0	.0	.0	0	.0		

43

										Brood	Year	and (Ag	e Gro	oup)										
			1	998	1,	397		19	96				95			19	94			19	93			
Sample	Sample		(1.1)	(1	.2)	(1	.3)	(2	2.2)	(1	.4)	(2	2.3)	(1	,5)	(2	2.4)	(1.6)	(2	.5)	. 7	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 7-Jul 14	142	Males	0	0.0	6	4.2	85	59.9	0	0.0	21	14.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	112	78.9
		Females	0	0.0	0	0.0	8	5.6	0	0.0	21	14.8	0	0.0	1	0.7	0	0.0	0	0.0	0	0.0	30	21.1
		Subtotal	0	0.0	6	4.2	93	65.5	0	0.0	42	29.6	0	0,0	1	0.7	0	0.0	0	0.0	0	0.0	142	100.0
Jul 15-Jul 23	135	Males	0	0.0	22	16.3	39	28.9	0	0.0	21	15.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	82	60.7
		Females	0	0.0	0	0.0	9	6.7	0	0.0	43	31.8	0	0.0	1	0.7	0	0.0	0	0.0	0	0.0	53	39.3
		Subtotal	0	0.0	22	16.3	48	35.6	0	0.0	64	47.4	0	0.0	1	0.7	0	0.0	0	0.0	0	0.0	135	100.0
Jul 24-Aug 29	100	Males	0	0.0	16	16.0	17	17.0	0	0.0	13	13.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	46	46.0
		Females	0	0.0	0	0.0	8	8.0	0	0.0	44	44.0	0	0.0	2	2.0	0	0.0	0	0.0	0	0.0	54	54.0
		Subtotal	0	0.0	16	16.0	25	25.0	0	0.0	57	57.0	0	0.0	2	2.0	0	0.0	0	0.0	0	0.0	100	100.0
Seasonal Total	377	Males	0	0.0	44	11.7	141	37.4	0	0.0	55	14.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	240	63.7
		Females	0	0.0	0	0.0	25	6.6	0	0.0	108	28.6	0	0.0	4	1.1	0	0.0	0	0.0	0	0.0	137	36.3
		Total	0	0.0	44	11.7	166	44.0	0	0.0	163	43.2	0	0.0	4	1.1	0	0.0	0	0.0	0	0.0	377	100.0
Mean Length		Males	0	0.0	52	9.0	69	9.0	0	0.0	78	0.0	0	.0	0	.0	0	.0	0	0.0	0	.0		
Std. Error			C	0.0	8	.0	6	.0	0	0.0	7	.0	0	.0	0	.0	0	.0	C	0.0	0	.0		
Mean Length		Females	0	0.0	0	.0	77	6.0	0	0.0	83	7.0	0	.0	90	8.0	0	.0	0	0.0	0	.0		
Std. Error			0	0.0	0	.0	13	3.0	0	.0	4	.0	0	.0	0	.0	0	.0	0	0.0	0	0		

Rapids chinook salmon catch age and sex composition by stratum, and mean length (mm), 2001 a

									В	rood \	ear a	nd (Ag	e Gro	oup)										
			15	998	19	997		19	96			19	95			19	94			19	993			
Sample	Sample		(1	1.1)	(1	.2)	(1	.3)	(2	.2)	(*	.4)	(2	2.3)	(1	.5)	(2	2.4)	(1	.6)	(2	2.5)	7	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Seasonal Total	20	Males	0	0.0	4	20.0	11	55.0	0	0.0	2	10.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	17	85.0
		Females	0	0.0	0	0.0	1	5.0	0	0.0	1	5.0	0	0.0	1	5.0	0	0.0	0	0.0	0	0.0	3	15.0
		Total	0	0.0	4	20.0	12	60.0	0	0.0	3	15.0	0	0.0	1	5.0	0	0.0	0	0.0	0	0.0	20	100.
Mean Length		Males	C	0.0	55	1.0	74	6.0	0	.0	82	7.0	C	0.0	0	0.0	0	0.0	0	0.0	C	0.0		
Std. Error			C	0.0	2	1.0	1	5.0	0	.0	1	9.0	C	0.0	0	0.0	C	0.0	.0	0.0	C	0.0		
Mean Length		Females	C	0.0	0	0.0	84	7.0	0	.0	81	5.0	0	0.0	84	8.0	0	0.0	C	0.0	C	0.0		
Std. Error			C	0.0	0	0.0	0	.0	0	.0	0	0.0	C	0.0	0	0.0	0	0.0	0	0.0		0.0		

^a Samples collected from fishwheels.

Salcha River chinook salmon escapement catch age and sex composition by stratum, and mean length (mm), 2001.

									Br	ood Y	ear ar	id (Age	e Gro	up)										
			19	98	19	97		19	96			19	95			19	94			19	93			
Sample	Sample		(1	.1)	(1	.2)	(1	.3)	(2	.2)	(1	.4)	(2	.3)	(1	.5)	(2	.4)	(1	.6)	(2	.5)	. 1	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Seasonal Total	192	Males	1	0.5	20	10.4	51	26.6	0	0.0	48	25.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	120	62.5
		Females	0	0.0	0	0.0	14	7.3	0	0.0	52	27.1	0	0.0	6	3.1	0	0.0	0	0.0	0	0.0	72	37.5
		Total	1	0.5	20	10.4	65	33.9	0	0.0	100	52.1	0	0.0	6	3.1	0	0.0	0	0.0	0	0.0	192	100.0
Mean Length		Males	33	0.0	53	6.0	71	16.0	(0.0	84	4.0	0	0.0	0	0.0	C	0.0	0	0.0	0	0.0		
Std. Error			0	.0	4	.5	8	3.8	(0.0	7	.5	C	0.0	C	0.0	C	0.0	C	0.0	C	0.0		
Mean Length		Females	0	.0	0	.0	72	24.0	(0.0	84	0.0	C	0.0	86	7.0	0	.0	C	0.0	0	0.0		
Std. Error			0	.0	0	.0		5.7	- (0.0	4	.9	0	0.0	4	.5	0	0.0	0	0.0	0	0.0		

Tozitna River chinook salmon escapement catch age and sex composition by stratum, and mean length (mm), 2001.^a

									E	Brood \	ear a	nd (Ag	e Gro	up)										
			19	998	19	997		19	96			19	95			19	94			19	93		1	
Sample	Sample		(1	.1)	(1	.2)	(1	(.3)	(2	2.2)	(1	.4)	(2	.3)	(1	.5)	(2	.4)	(1	.6)	(2	2.5)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Seasonal Total	59	Males	1	1.7	8	13.6	14	23.7	0	0.0	12	20.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	35	59.3
		Females	0	0.0	0	0.0	5	8.5	0	0.0	18	30.5	0	0.0	1	1.7	0	0.0	0	0.0	0	0.0	24	40.7
		Total	1	1.7	8	13.6	19	32.2	0	0.0	30	50.8	0	0.0	1	1.7	0	0.0	0	0,0	0	0.0	59	100.0
Mean Length		Males	35	5.0	54	8.0	71	2.0		0.0	81	5.0	0	.0	0	0.0	0	.0	Ċ	.0	0	0.0		
Std. Error			0	0.0	0	0.0	1	8.0	C	0.0	1	5.0	0	0.0	0	0.0	0	.0	C	.0	C	0.0		
Mean Length		Females	0	1.0	0	0.0	80	14.0	0	0.0	83	9.0	0	.0	84	0.0	0	.0	C	.0	0	0.0		
Std. Error			0	0.0	0	0.0	2	1.0		0.0	10	0.0	0	.0	0	0.0	0	.0	0	.0	0	0.0		

^a Data refes to carcass samples only.

Summer Chum Salmon Subsistence Data

Yukon River District 1 Emmonak chum salmon subsistence catch from 5.5" mesh gillnet, age and sex composition by stratum, and mean length (mm), 2001.

						Brood Yea	ar and (Ag	e Group)						
			19	998	1	997	19	996	19	95	19	994		
Sample	Sample		(0	0.2)	((0.3)	(0	.4)	(0	.5)	(0	.6)	Т	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Total ^a	353	Males	0	0.0	26	7.4	145	41.1	6	1.7	0	0.0	177	50.2
		Females	0	0.0	24	6.8	148	41.9	4	1.1	0	0.0	176	49.8
		Subtotal	0	0.0	50	14.2	293	83.0	10	2.8	0	0.0	353	100.0
Total ^b	88	No Sex	0	0.0	25	28.4	62	70.5	1	1.1	0	0.0	88	100.0
2277		Subtotal	0	0.0	25	28.4	62	70.5	1	1,1	0	0.0	88	100.0
Season Total	441	Males	0	0.0	26	5.9	145	32.9	6	1.4	0	0.0	177	40.1
		Females	0	0.0	24	5.4	148	33.6	4	0.9	0	0.0	176	39.9
		No Sex	0	0.0	25	5.7	62	14.1	1	0.2	0	0.0	88	20.0
		Subtotal	0	0.0	75	17.0	293	80.5	10	2.5	0	0.0	441	100.0
Mean Length		Males	0	0.0	58	31.7	60	0.2	61	2.5	0	.0		
Std. Error			0	0.0	2	2.2	25	5.9	31	1.4	0	.0		
Mean Length		Females	0	0.0	57	2.3	58	4.2	62	0.0	0	.0		
Std. Error			0	0.0	3	4.4	25	5.3	12	2.2	0	.0		

^a Samples collected included sex and lengths data.

^b Samples collected did not include sex and length data.

Yukon River District 1 Emmonak chum salmon subsistence catch from mixed mesh gillnet, age and sex composition by stratum, and mean length (mm), 2001.

							Brood Y	ear and (Ag	ge Group)				9	
			19	998	19	997	19	996	19	95	19	994		
Sample	Sample		(0	.2)	(0	1.3)	(0	0.4)	(0	.5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	52	Males	0	0.0	6	11.5	21	40.4	1	1.9	0	0.0	28	53.8
		Females	0	0.0	4	7.7	20	38.4	0	0.0	0	0.0	24	46.2
		Total	0	0.0	10	19.2	41	78.8	1	1.9	0	0.0	52	100.0
Mean Length		Males	0	.0	58	1.0	61	4.0	58	0.0	0	.0		
Std. Error			0	.0	12	2.0	6	0.0	0	.0	0	.0		
Mean Length		Females	0	.0	56	9.0	57	9.0	0	.0	0	.0		
Std. Error			0	.0	11	1.0	4	.0	0	.0	0	.0		

							Brood Ye	ear and (Ag	e Group)					
			15	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0).2)	(0	0.3)	(0	0.4)	(0	.5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	54	Males	0	0.0	2	3.7	21	38.9	0	0.0	0	0.0	23	42.6
		Females	0	0.0	2	3.7	27	50.0	2	3.7	0	0.0	31	57.4
		Total	0	0.0	4	7.4	48	88.9	2	3.7	0	0.0	54	100.0
Mean Length		Males	C	0.0	60	3.0	61	2.0	0	.0	C	0.0		
Std. Error			C	0.0	1:	3.0	6	.0	0	.0	C	0.0		
Mean Length		Females	c	.0	58	3.0	58	8.0	57	0.0	C	0.0		
Std. Error			C	.0	18	3.0	5	.0	20	0.0	0	0.0		

^a Samples collected from fish wheels.

Yukon River District 5 chum salmon subsistence age and sex composition by stratum, and mean length (mm), 2001.8

		-					Brood Ye	ar and (Age	e Group)					
			19	998	19	997	19	996	19	95	19	994		
Sample	Sample		(0).2)	(0	.3)	(0	.4)	(0	.5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	39	Males	0	0.0	0	0.0	17	43.6	2	5.1	0	0.0	19	48.7
		Females	0	0.0	1	2.6	19	48.7	0	0.0	0	0.0	20	51.3
		Total	0	0.0	1	2.6	36	92.3	2	5.1	0	0.0	39	100.0
Mean Length		Males	0	0.0	0	.0	61	6.0	63	8.0	0	.0		
Std. Error			0	0.0	0	.0	6	.0	3	.0	0	.0		
Mean Length		Females	.0	0.0	46	5.0	58	1.0	0	.0	0	.0		
Std. Error			0	0.0	0	.0	6	.0	0	.0	0	.0		

^a Samples collected from fish wheels.

Summer Chum Salmon

Test Fishing

Catch Data

Big Eddy chum salmon 5.5" drift gillnet test fishing catch age and sex composition by stratum, and mean length (mm), 2001.

							Brood Ye	ear and (Age	e Group)					
			1	998	15	997	19	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0	0.3)	(0).4)	(0	0.5)	(0).6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,
Jun 9-Jun 16	124	Males	0	0.0	7	5.6	41	33.1	2	1.6	0	0.0	50	40.3
6-3/4 -5/16-504 (1.2)	(-4)	Females	0	0.0	9	7.3	63	50.8	2	1.6	0	0.0	74	59.7
		Subtotal	0	0.0	16	12.9	104	83.9	4	3.2	0	0.0	124	100.0
Jun 17-Jun 22	110	Males	0	0.0	8	7.3	34	30.9	0	0.0	0	0.0	42	38.2
out it out IL	110	Females	0	0.0	14	12.7	54	49.1	0	0.0	0	0.0	68	61.8
		Subtotal	0	0.0	22	20.0	88	80.0	0	0.0	0	0.0	110	100.0
		Gubiotai	0.0	0.0	44	20,0	00	00.0		0.0	- 0	0.0	110	100.0
Jun 23-Jun 27	136	Males	0	0.0	14	10.3	29	21.3	3	2.2	0	0.0	46	33.8
		Females	0		27	19.8	62	45.6	1	0.7	0	0.0	90	66.2
		Subtotal	0	0.0	41	30.1	91	66.9	4	2.9	0	0.0	136	100.0
Jun 28-Jul 13	168	Males	0	0.0	24	14.3	35	20.8	0	0.0	0	0.0	59	35.1
3-670 (25) (60) (36)	22.0	Females	0	0.0	43	25.6	66	39.3	0	0.0	0	0.0	109	64.9
		Subtotal	0	0.0	67	39.9	101	60,1	0	0.0	0	0.0	168	100,0
Season Total	538	Males	0	0.0	53	9.8	139	25.8	5	0.9	0	0.0	197	36.6
	200	Females	0	0.0	93	17.3	245	45.6	3	0.6	0	0.0	341	63.4
		Total	0	0.0	146	27.1	384	71.4	8	1.5	0	0.0	538	100.0
Mean Length		Males	0	.0	56	8.0	58	8.0	59	3.0	0	.0		
Std. Error				.0		.0		.0		9.0		.0		
Mean Length		Females	0	.0	55	7.0	57	1.0	56	5.0	0	.0		
Std. Error				.0		.0		.0		5.0		.0		

		100					Brood Y	ear and (Ag	je Group)				5.	
			19	998	19	997	19	996	1995		1994			
Sample	Sample		(0	0.2)	(0.3)		(0.4)		(0.5)		(0.6)		T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jun 13-Jun 28	109	Males	0	0.0	6	5.5	30	27.5	0	0.0	0	0.0	36	33.0
		Females	0	0.0	7	6.4	66	60.6	0	0.0	0	0.0	73	67.0
		Subtotal	0	0.0	13	11.9	96	88.1	0	0.0	0	0.0	109	100.0
Jun 29-Aug 12	91	Males	0	0.0	7	7.7	20	22.0	0	0.0	0	0.0	27	29.7
		Females	0	0.0	16	17.6	47	51.6	1	1.1	0	0.0	64	70.3
		Subtotal	0	0.0	23	25.3	67	73.6	1	1.1	0	0.0	91	100.0
Season Total	200	Males	0	0.0	13	6.5	50	25.0	0	0.0	0	0.0	63	31.5
		Females	0	0.0	23	11.5	113	56.5	3	0.5	0	0.0	137	68.5
		Total	0	0.0	36	18.0	163	81.5	1	0.5	0	0.0	200	100.0
Mean Length		Males		0.0	55	7.0	59	3.0	0	0.0	0	.0		
Std. Error		100-100		0.0		.0		0.0	C	0.0	0	.0		
Mean Length		Females		0.0	55	7.0	58	2.0	62	5.0	0	.0		
Std. Error				0.0	5	0.0	2	.0	0	0.0	0	.0		

Summer Chum Salmon

Escapement

Data

		0.0					Brood Ye	ear and (Ag	e Group)					
			1	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0	0.3)	(0).4)	(0.5)		(0.6)		T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 1-Jul 26	43	Males	0	0.0	4	9.3	16	37.2	0	0.0	0	0.0	20	46.5
		Females	0	0.0	4	9.3	19	44.2	0	0.0	0	0.0	23	53.5
		Subtotal	0	0.0	8	18.6	35	81.4	0	0.0	0	0.0	43	100.0
Jul 27-Aug 30	59	Males	0	0.0	2	3.4	25	42.4	2	3.4	0	0.0	29	49.2
		Females	0	0.0	10	16.9	20	33.9	0	0.0	0	0.0	30	50.8
		Subtotal	0	0.0	12	20.3	45	76.3	2	3.4	0	0.0	59	100.0
Season Total	102	Males	0	0.0	6	5,9	41	40.2	2	2.0	0	0.0	49	48.0
		Females	0	0.0	14	13.7	39	38.2	0	0.0	0	0.0	53	52.0
		Total	0	0.0	20	19.6	80	78.4	2	2.0	0	0.0	102	100.0
Mean Length		Males	C	0.0	56	0.0	59	7.0	58	0.0	0	.0		
Std. Error				0.0	1-	4.0	6	0,0	41	0.0		.0		
Mean Length		Females	0	0.0	53	3.0	55	7.0	0	0,0	0	.0		
Std. Error			0	0.0	13	2.0	4	.0	0	.0	0	.0		

							Brood Ye	ar and (Ag	e Group)					
			19	998	1	997	19	996	19	995	1994			
Sample	Sample		(0	1.2)	(0	0.3)	(0	(.4)	(0	1.5)	(0.6)		T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Jun 28-Jun 30	138	Males	0	0.0	3	2.2	66	47.8	2	1.4	0	0.0	71	51.4
127.64.45.45.41		Females	0	0.0	2	1.4	65	47.1	0	0.0	0	0.0	67	48.6
		Subtotal	0	0.0	5	3.6	131	94.9	2	1.4	0	0.0	138	100.
Jul 1-Jul 7	174	Males	0	0.0	6	3.5	67	38.5	4	2.3	0	0.0	77	44.3
00110011	11.7	Females	0	0.0	14	8.0	79	45.4	4	2.3	0	0.0	97	55.7
		Subtotal	0	0.0	20	11.5	146	83.9	8	4.6	0	0.0	174	100.
Jul 8- Jul 13	122	Males	0	0.0	13	10.7	31	25.4	1	8.0	0	0.0	45	36.9
00, 0 00, 10	122	Females	0	0.0	16	13.1	61	50.0	o	0.0	0	0.0	77	63.
		Subtotal	0	0.0	29	23.8	92	75.4	1	8.0	0	0.0	122	100.
Jul 18- Jul 19	84	Males	1	1.2	6	7.2	36	42.8	0	0.0	0	0.0	43	51.2
		Females	0	0.0	8	9.5	33	39.3	0	0.0	0	0.0	41	48.8
		Subtotal	1	1.2	14	16.7	69	82.1	0	0.0	0	0.0	84	100.
Season Total	518	Males	1	0.2	28	5.4	200	38.6	7	1.3	0	0.0	236	45.6
		Females	0	0.0	40	7.7	238	46.0	4	0.8	0	0.0	282	54.4
		Total	1	0.2	68	13.1	438	84.6	11	2.1	0	0.0	518	100.
Mean Length		Males	49	0.0	56	4.0	60	3.0	61	4.0	0	.0		
Std. Error		,,,,,,,,		.0		.0		.0		5.0		.0		
Mean Length		Females	0	.0	54	5.0	57	2.0	58	3.0	0	.0		
Std. Error				.0		.0	2	.0	13	3.0		.0		

						E	Brood Yea	ar and (Age	e Group)					
			19	998	1	997	19	996	19	995	19	994		
Sample	Sample		(0	1.2)	(0	0.3)	(0	1.4)	(0.5)		(0.6)		T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 2-Jul 14	105	Males	0	0.0	16	15.3	40	38.1	6	5.7	0	0.0	62	59.0
		Females	0	0.0	10	9.5	30	28.6	3	2.9	0	0.0	43	41.0
		Subtotal	0	0.0	26	24.8	70	66.7	9	8.6	0	0.0	105	100.0
Jul 15-Jul 25	127	Males	0	0.0	29	22.8	51	40.1	3	2.3	0	0.0	83	65.4
3.00		Females	0	0.0	17	13.4	26	20.5	1	0.8	0	0.0	44	34.6
		Subtotal	0	0.0	46	36.2	77	60.6	4	3.1	0	0.0	127	100.0
Jul 26-Aug 2	61	Males	0	0.0	23	37.7	26	42.6	4	6.6	0	0.0	53	86.9
		Females	0	0.0	3	4.9	5	8.2	0	0.0	0	0.0	8	13.1
		Subtotal	0	0.0	26	42.6	31	50.8	4	6.6	0	0.0	61	100.0
Season Total	293	Males	0	0.0	68	23.2	117	40.0	13	4.4	0	0.0	198	67.6
		Females	0	0.0	30	10.2	61	20.8	4	1.4	0	0.0	95	32.4
		Total	0	0.0	98	33.4	178	60.8	17	5.8	0	0.0	293	100.0
Mean Length		Males	0	.0	57	1.0	60	8.0	61	1.0	0	.0		
Std. Error			0	.0	3	.0	3	.0	6	.0	0	.0		
Mean Length		Females	0	.0	52	9.0	56	4.0	56	0.0	0	.0		
Std. Error				.0	5	.0	4	.0	4	.0	0	.0		

							Brood Ye	ar and (Ag	e Group)					
			19	998	19	997	19	996	15	995	19	994		
Sample	Sample		((0.2)	(0	0.3)	(0).4)	(0).5)	(0	0.6)	Т	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 1-Jul10	154	Males	0	0.0	10	6.5	70	45.5	4	2.6	0	0.0	84	54.5
		Females	0	0.0	3	1.9	67	43.5	0	0.0	0	0.0	70	45.5
		Subtotal	0	0.0	13	8.4	137	89.0	4	2.6	0	0.0	154	100.0
Jul 16-Jul 24	152	Males	0	0.0	20	13.2	45	29.6	3	2.0	0	0.0	68	44.7
44.14.44.27	,	Females	0	0.0	13	8.5	65	42.8	6	3.9	0	0.0	84	55.3
		Subtotal	0	0.0	33	21.7	110	72.4	9	5.9	0	0.0	152	100.0
Jul 25-Aug 1	152	Males	0	0.0	24	15.8	51	33.6	6	4.0	0	0.0	81	53.3
	142	Females	0	0.0	22	14.5	47	30.9	2	1.3	0	0.0	71	46.7
		Subtotal	0	0.0	46	30.3	98	64.5	8	5.3	0	0.0	152	100.0
Aug 2-Aug 8	123	Males	0	0.0	7	5.7	43	35.0	6	4.9	0	0.0	56	45.5
		Females	1	0.8	23	18.7	38	30.9	5	4.0	0	0.0	67	54.5
		Subtotal	1	0.8	30	24.4	81	65.9	11	8.9	0	0.0	123	100.0
Season Total	581	Males	0	0.0	61	10.5	209	36.0	19	3.3	0	0.0	289	49.7
	2010	Females	1	0.2	61	10.5	217	37.3	13	2.2	0	0.0	292	50.3
		Total	1	0.2	122	21.0	426	73.3	32	5.5	0	0.0	581	100.0
Mean Length		Males	C	0.0	55	3.0	58	4.0	59	3.0	0	.0		
Std. Error				0.0		3,0	2	.0	7	.0		.0		
Mean Length		Females	49	0.00	52	4.0	55	9.0	55	6.0	0	.0		
Std. Error			0	0.0	3	0.0	2	.0	6	.0	0	.0		

						1	Brood Yea	ar and (Age	Group)					
			- 1	998	1	997	1	996	19	995	11	994		
Sample	Sample		((0.2)	(0	0.3)	(0	0.4)	(0).5)	(0	0.6)	Total	
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per
Jul 10-Jul 16	123	Males	0	0.0	5	4.1	44	35.8	2	1.6	0	0.0	51	41.5
		Females	0	0.0	5	4.0	67	54.4	0	0.0	0	0.0	72	58.
		Subtotal	0	0.0	10	8.1	111	90.2	2	1.6	0	0.0	123	100.
Jul 17-Jul 22	108	Males	0	0.0	7	6.5	28	25.9	2	1.9	0	0.0	37	34.
		Females	0	0.0	10	9.2	61	56.5	0	0.0	0	0.0	71	65.
		Subtotal	0	0.0	17	15.7	89	82.4	2	1.9	0	0.0	108	100
Jul 24-Jul 29	137	Males	0	0.0	20	14.6	34	24.8	1	0.7	0	0.0	55	40.
Section Sales	0.50	Females	0	0.0	40	29.2	40	29.2	2	1.5	0	0.0	82	59.
		Subtotal	0	0.0	60	43.8	74	54.0	3	2.2	0	0.0	137	100
Aug 2-Aug 6	166	Males	0	0.0	21	12.7	24	14.5	2	1.2	0	0.0	47	28.
		Females	1	0.6	61	36.7	53	31.9	4	2.4	0	0.0	119	71.
		Subtotal	1	0.6	82	49.4	77	46.4	6	3.6	0	0.0	166	100
Aug 8-Aug10	92	Males	0	0.0	10	10.8	14	15.2	Ó	0.0	0	0.0	24	26.
		Females	0	0.0	33	35.9	33	35.9	2	2.2	0	0.0	68	73.
		Subtotal	0	0.0	43	46.7	47	51.1	2	2.2	0	0.0	92	100
Season Total	626	Males	0	0.0	63	10.1	144	23.0	7	1.1	0	0.0	214	34.
		Females	1	0.2	149	23.8	254	40.6	8	1.3	0	0.0	412	65.
		Total	1	0.2	212	33.9	398	63.6	15	2.4	0	0.0	626	100.
Mean Length		Males	0	.0	56	0.0	59	1.0	57	7.0	0	.0		
Std. Error			0	.0	4	.0	3	0.0	8	.0	0	.0		
Mean Length		Females		0.0		3.0		9.0		7.0		.0		
Std. Error			0	.0	2	.0	2	.0	4	.0	0	.0		

Nulato River chum salmon escapement catch age and sex composition by stratum, and mean length (mm), 2001.

		-					Brood Ye	ear and (Ag	e Group)					
			19	998	19	997	19	996	19	995	1994			
Sample	Sample Size		(0	(0.2)		(0.3)		(0.4)		(0.5)		(0.6)		otal
Dates			No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	36	Males	0	0.0	3	8.3	17	47.2	0	0.0	0	0.0	20	55.6
		Females	0	0.0	0	0.0	16	44.5	0	0.0	0	0.0	16	44.4
		Total	0	0.0	3	8.3	33	91.7	0	0.0	0	0.0	36	100.0
Mean Length		Males	0	0.0	55	7.0	60	9.0	0	.0	0	.0		
Std. Error			C	0.0	3	0.0	7	.0	0	.0	0	.0		
Mean Length		Females	C	0.0	0	0.0	57	1.0	0	.0	0	.0		
Std. Error			C	0.0	0	.0	6	.0	0	.0	0	.0		

						- 1	Brood Yea	r and (Age	Group)					
			19	998	19	997	15	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0	0.3)	(0	0.4)	(0).5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 1-Jul 27	77	Males	0	0.0	2	2.6	47	61.0	3	3.9	0	0.0	52	67.5
		Females	0	0.0	2	2.6	23	29.9	0	0.0	0	0.0	25	32.5
		Subtotal	0	0.0	4	5.2	70	90.9	3	3.9	0	0.0	77	100.
Aug 1-Aug3	116	Males	0	0.0	5	4.3	34	29.3	3	2.6	0	0.0	42	36.2
		Females	0	0.0	9	7.8	64	55.2	1	0.8	0	0.0	74	63.8
		Subtotal	0	0.0	14	12.1	98	84.5	4	3.4	0	0.0	116	100.
Aug 7-Aug 12	110	Males	0	0.0	12	10.9	32	29.1	2	1.8	0	0.0	46	41.8
9		Females	0	0.0	27	24.6	37	33.6	0	0.0	0	0.0	64	58.2
		Subtotal	0	0.0	39	35.5	69	62.7	2	1.8	0	0.0	110	100.
Season Total	303	Males	0	0.0	19	6.3	113	37.3	8	2.7	0	0.0	140	46.2
Boards a state.		Females	0	0.0	38	12.5	124	40.9	1	0.3	0	0.0	163	53.8
		Total	0	0.0	57	18.8	237	78.2	9	3.0	0	0.0	303	100.
Mean Length		Males	0	0.0	56	9.0	59	8.0	61	3.0	0	.0		
Std. Error			0	0.0	8	3.0	3	.0	1	1.0	0	0.0		
Mean Length		Females	Ó	1.0	52	9.0	55	4.0	54	5.0	0	0.0		
Std. Error		* 400,000	0	0.0		.0	2	.0	.0	.0	.0	.0		

Fall Chum Salmon Subsistence Data

							Brood Y	ear and (Ag	e Group)				0.	
			19	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0	0.3)	(0	0.4)	(0	0.5)	(0).6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,
Aug-23	101	Males	0	0.0	23	22.7	24	23.8	0	0.0	0	0.0	47	46.5
4.75.73		Females	0	0.0	33	32.7	21	20.8	0	0.0	0	0.0	54	53.5
		Subtotal	0	0.0	56	55.4	45	44.6	0	0.0	0	0.0	101	100.0
Sept-6	144	Males	0	0.0	33	22.9	35	24.3	1	0.7	0	0.0	69	47.9
1000		Females	0	0.0	47	32.7	28	19.5	0	0.0	0	0.0	75	52.1
		Subtotal	0	0.0	80	55.6	63	43.8	1	0.7	0	0.0	144	100.0
Sept-20	50	Males	0	0.0	4	8.0	8	16.0	0	0.0	0	0.0	12	24.0
		Females	0	0.0	20	40.0	18	36.0	0	0.0	0	0.0	38	76.0
		Subtotal	0	0.0	24	48.0	26	52.0	0	0.0	0	0.0	50	100.0
Season Total	295	Males	0	0.0	60	20.3	67	22.7	1	0.3	0	0.0	128	43.4
		Females	0	0.0	100	33.9	67	22.7	0	0.0	0	0.0	167	56.6
		Total	0	0.0	160	54.2	134	45.4	1	0.3	0	0.0	295	100.0
Mean Length		Males	0	.0	59	6.0	61	7.0	61	5.0	0	.0		
Std. Error				.0	4	.0	4	.0	0	0.0	0	.0		
Mean Length		Females	0	.0	57	0.0	58	9.0	0	.0	0	.0		
Std. Error			0	.0	3	.0	4	.0	0	.0	0	.0		

Fall Chum Salmon

Test Fishing

Catch Data

Big Eddy fall chum salmon 6.0 "drift gillnet test fishing catch age and sex composition by stratum, and mean length (mm), 2001.

							Brood Y	ear and (Ag	e Group)					
			19	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0).2)	(0	0.3)	(0	0.4)	(0	0.5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 17-Aug 1	161	Males	0	0.0	48	29.8	21	13.0	0	0.0	0	0.0	69	42.9
		Females	0	0.0	61	37.9	31	19.3	0	0.0	0	0,0	92	57.1
		Subtotal	0	0.0	109	67.7	52	32.3	0	0.0	0	0.0	161	100.0
Aug 2-22	171	Males	0	0.0	48	28.1	18	10.5	0	0.0	0	0.0	66	38.6
Carle		Females	1	0.6	79	46.2	25	14.6	0	0.0	0	0.0	105	61.4
		Subtotal	1	0.6	127	74.3	43	25.1	0	0.0	0	0.0	171	100.0
Season Total	332	Males	0	0.0	96	28.9	39	11.7	0	0.0	0	0.0	135	40.7
		Females	1	0.3	140	42.2	56	16.9	0	0.0	0	0.0	197	59.3
		Total	1	0.3	236	71.1	95	28.6	0	0.0	0	0.0	332	100.0
Mean Length		Males	0	.0	60	5.0	62	5.0	0	.0	0	.0		
Std. Error				.0		.0		.0	0	.0		.0		
Mean Length		Females	58	0.0	59	1.0	61	5.0	0	.0		.0		
Std. Error			0	.0	2	.0	4	.0	0	.0	0	.0		

							Brood Y	ear and (Ag	ge Group)					
			1	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0).3)	(0	1.4)	(0).5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,
Jul 17-24	128	Males	0	0.0	17	13.3	30	23.5	1	0.8	0	0.0	48	37.5
135,000	1,000	Females	0	0.0	39	30.5	41	32.0	0	0.0	0	0.0	80	62.5
		Subtotal	0	0.0	56	43.8	71	55.5	1	0.8	0	0.0	128	100.0
Jul 25-Aug 2	126	Males	0	0.0	33	26.2	18	14.3	0	0.0	0	0.0	51	40.5
au Lo riug L	120	Females	0	0.0	45	35.7	30	23.8	0	0.0	0	0.0	75	59.5
		Subtotal	0	0.0	78	61.9	48	38.1	0	0.0	0	0.0	126	100.0
Aug 3-8	125	Males	0	0.0	33	26.4	17	13.6	0	0.0	0	0.0	50	40.0
		Females	0	0.0	52	41.6	23	18.4	0	0.0	0	0.0	75	60.0
		Subtotal	0	0.0	85	68.0	40	32.0	0	0.0	0	0.0	125	100.0
Aug 9-24	123	Males	1	0.8	38	30.9	9	7.3	0	0.0	0	0.0	48	39.0
		Females	1	0.8	60	48.8	14	11.4	0	0.0	0	0.0	75	61.0
		Subtotal	2	1.6	98	79.7	23	18.7	0	0.0	0	0.0	123	100.0
Season Total	502	Males	1	0.2	121	24.1	74	14.8	1	0.2	0	0.0	197	39.2
		Females	1	0.2	196	39.0	108	21.5	0	0.0	0	0.0	305	60.8
		Total	2	0.4	317	63.1	182	36.3	1	0.2	0	0.0	502	100.0
Mean Length		Males	54	5.0	60	1.0	61	7.0	64	0.0	0	.0		
Std. Error				0.0		.0	4	.0	0	.0		.0		
Mean Length		Females	57	5.0	59	2.0	60	9.0	0	.0	0	.0		
Std. Error			0	0.0	2	.0	3	.0	0	.0	0	.0		

Fall Chum Salmon Escapement Data

Delta River fall chum salmon escapement age and sex composition by stratum, and mean length, 2001.

		_					Brood Ye	ear and (Ag	e Group)					
			19	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0).3)	(0	.4)	(0	0.5)	(0	.6)	To	otal
Dates	Size		No.	Per,	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	169	Males	1	0.6	52	30.8	41	24.3	0	0.0	0	0.0	94	55.6
		Females	2	1.2	55	32.5	17	10.0	1	0.6	0	0.0	75	44.4
		Total	3	1.8	107	63.3	58	34.3	1	0.6	0	0.0	169	100.0
Mean Length		Males	55	5.0	60	4.0	62	5.0	0	.0	0	.0		
Std. Error			0	0.0	4	.0	4	.0	0	.0	0	.0		
Mean Length		Females	53	5.0	56	5.0	59	7.0	56	0.0	0	.0		
Std. Error			30	0.0	4	.0	9	.0	0	.0	0	.0		

							Brood Ye	ar and (Age	Group)					
			19	998	19	997	15	996	15	995	15	994		
Sample	Sample		(0	0.2)	(0	0.3)	(0	0.4)	(0).5)	(0	0.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Aug 1-8	93	Males	0	0.0	1	1.1	2	2.2	0	0.0	0	0.0	3	3.2
		Females	2	2.2	56	60.2	32	34.4	0	0.0	0	0.0	90	96.8
		Subtotal	2	2.2	57	61.3	34	36.6	0	0.0	0	0.0	93	100.0
Aug 9-Sept 10	90	Males	0	0.0	8	8.9	8	8.9	0	0.0	0	0.0	16	17.8
		Females	2	2.2	44	48.9	28	31.1	0	0.0	0	0.0	74	82.2
		Subtotal	2	2.2	52	57.8	36	40.0	0	0.0	0	0.0	90	100.0
Season Total	183	Males	0	0.0	9	4.9	10	5.5	0	0.0	0	0.0	19	10.4
		Females	4	2.2	100	54.7	60	32.8	0	0.0	0	0.0	164	89.6
		Total	4	2.2	109	59.6	70	38.3	0	0.0	0	0.0	183	100.0
Mean Length		Males	C	0.0	64	0.0	63	6.0	0	0.0	0	0.0		
Std. Error			C	0.0	1	3.0	10	0.0	0	0.0	0	0.0		
Mean Length		Females	55	5.0	59	96.0	60	9.0	0	.0	0	0.0		
Std. Error			8	3.0	3	3.0	5	0.0	0	.0	0	0.0		

Sheenjek River fall chum salmon escapement age and sex composition by stratum, and mean length, 2001.

							Brood Ye	ar and (Ag	e Group)					
			19	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0	0.2)	(0	.3)	(0	.4)	(0	,5)	(0	.6)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,	No.	Per.
Season Total	71	Males	0	0.0	14	19.7	25	35.2	0	0.0	0	0.0	39	54.9
		Females	0	0.0	12	16.9	20	28.2	0	0.0	0	0.0	32	45.1
		Total	0	0.0	26	36.6	45	63.4	0	0.0	0	0.0	71	100.0
Mean Length		Males	0	0.0	60	2.0	62	7.0	0	.0	0	.0		
Std. Error			0	0.0	12	2.0	6	.0	0	.0	0	.0		
Mean Length		Females	0	0.0	57	4.0	58	2.0	0	.0	0	.0		
Std. Error			0	0.0	8	.0	5	.0	0	.0	0	.0		

Toklat River fall chum salmon escapement age and sex composition by stratum, and mean length, 2001.

							Brood Y	ear and (Ag	e Group)					
			19	998	19	997	19	996	19	995	19	994		
Sample	Sample		(0	.2)	(0).3)	(0	1.4)	(0).5)	(0	.6)	To	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per,	No.	Per.	No.	Per.	No.	Per.
Season Total	168	Males	4	2.4	63	37.5	21	12.5	0	0.0	0	0.0	88	52.4
		Females	0	0.0	62	36.9	17	10.1	1	0.6	0	0.0	80	47.6
		Total	4	2.4	125	74.4	38	22.6	1	0.6	0	0.0	168	100.0
Mean Length		Males	53	4.0	58	1.0	59	5.0	C	0.0	0	.0		
Std. Error			9	.0	3	.0	6	.0	0	0.0	0	.0		
Mean Length		Females	0	.0	55	6.0	58	5.0	60	5.0	0	.0		
Std. Error			0	.0	4	.0	6	.0	0	0.0	0	.0		

Coho Salmon Subsistence Data

Yukon River District 5 Tanana Village coho salmon subsistence catch age and sex composition by stratum, and mean length (mm), 2001.

						Brood	Year and (Ag	ge Group)				
			19	98	19	997		19	96			
Sample	Sample		(1	.1)	(2	2.1)	(2	.2)	(3	.1)	To	otal
Dates	Size		No.	Per.	No.	Per,	No.	Per.	No.	Per.	No.	Per.
Season Total	18	Males	3	16.7	6	33,3	0	0.0	0	0.0	9	50.0
		Females	1.	5.5	8	44.5	0	0.0	0	0.0	9	50,0
		Total	4	22.2	14	77.8	0	0.0	0	0.0	18	100.0
Mean Length		Males	50	8.0	56	0.88	0	.0	0	.0	0	0.0
Std. Error			26	3.0	13	3.0	0	.0	0	.0	0	0.0
Mean Length		Females	58	0.0	58	3.0	0	.0	0	.0	0	0.0
Std. Error			0	.0	13	3.0	0	.0	0	.0	0	0.0

^a Samples collected from fishwheels.

Coho Salmon
Test Fishing

Catch Data

Big Eddy coho salmon 6.0" drift gillnet test fishing catch age and sex composition by stratum, and mean length (mm), 2001.

						Brood	Year and (Ag	ge Group)				
			19	998	19	997		19	96			
Sample	Sample		(1	.1)	(2	2.1)	(2	.2)	(3	.1)	To	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per,
Season Total	130	Males	9	6.9	57	43.8	2	1.5	1	0.8	69	53.1
		Females	7	5.4	52	40.0	1	8.0	1	0.7	61	46.9
		Total	16	12.3	109	83.8	3	2.3	2	1.5	130	100.0
Mean Length		Males	59	8.0	58	0.8	57	3.0	60	0.0	0	0.0
Std. Error			12	2.0	0	0.0	43	3.0	0	.0	0	0.0
Mean Length		Females	60	2.0	59	5.0	58	0.0	54	0.0	0	0.0
Std. Error			7	.0	0	0.0	0	.0	0	.0	0	0.0

						Brood Y	ear and (Age	e Group)				
			15	998	19	997		19	996			
Sample	Sample		(1	(.1)	(2	2.1)	(2	(.2)	(3	.1)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Jul 24-Aug 12	112	Males	10	8.9	37	33.0	Ŷ	0.9	0	0.0	48	42.9
		Females	6	5.4	57	50.9	0	0.0	1	0.9	64	57.1
		Subtotal	16	14.3	94	83.9	1	0.9	1	0.9	112	100.0
Aug 13-28	140	Males	7	5.0	54	38.6	1	0.7	1	0.7	63	45.0
		Females	3	2.1	68	48.5	2	1.4	4	2.9	77	55.0
		Subtotal	10	7.1	122	87.1	3	2.1	5	3.6	140	100.0
Season Total	252	Males	17	6.7	91	36.1	2	0.8	-1:	0.4	111	44.0
		Females	9	3.6	125	49.6	2	0.8	5	2.0	141	56.0
		Total	26	10.3	216	85.7	4	1.6	6	2.4	252	100.0
Mean Length		Males	58	34.0	58	3.0	58	5.0	61	0.0		0.0
Std. Error				0.0		0.0		.0		.0		0.0
Mean Length		Females	59	14.0	59	3.0	60	3.0	57	1.0	C	0.0
Std. Error			5	5.0	2	.0	8	.0	4	.0	0	0.0

Yukon River District 4 Kaltag coho salmon test age and sex composition by stratum, and mean length (mm), 2001.

		-				Brood Y	ear and (Age	e Group)				
			19	998	15	997		19	96			
Sample	Sample		(1	.1)	(2	2.1)	(2	2)	(3	.1)	To	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	40	Males	9	22,5	14	35.0	0	0.0	1	2.5	24	60.0
		Females	3	7.5	13	32.5	0	0.0	0	0.0	16	40.0
		Total	12	30.0	27	67.5	0	0.0	1	2.5	40	100.0
Mean Length		Males	60	6.0	58	88.0	0	.0	62	5.0	C	0.0
Std. Error			9	0.0	6	5.0	0	.0	0	.0	C	0.0
Mean Length		Females	57	0.0	57	0.0	0	.0	0	.0		0.0
Std. Error			2	1.0	5	5.0	0	.0	0	.0		0.0

		_				Brood Ye	ar and (Age	Group)				
			19	998	19	997		19	996			
Sample	Sample		(1	(1)	(2	1.1)	(2	2.2)	(3	.1)	T	otal
Dates	Size		No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Aug 8-Aug 13	111	Males	8	7.2	51	46.0	1	0.9	2	1.8	62	55.9
		Females	6	5.4	40	36.0	0	0.0	3	2.7	49	44.1
		Subtotal	14	12.6	91	82.0	1	0.9	5	4.5	111	100.0
Aug 14-Aug 22	87	Males	5	5.8	38	43.7	0	0.0	0	0.0	43	49.4
		Females	5	5.7	37	42.5	1	1.1	1	1.1	44	50.6
		Subtotal	10	11.5	75	86.2	1/411	1.1	1	1.1	87	100.0
Aug 23-Sept 9	102	Males	6	5.9	36	35.3	0	0.0	1	1.0	43	42.2
	100	Females	0	0.0	58	56.9	0	0.0	1	1.0	59	57.8
		Subtotal	6	5.9	94	92.2	0	0.0	2	2.0	102	100.0
Season Total	300	Males	19	6.3	125	41.7	11	0.4	3	1.0	148	49.3
D D 0/22/1 + 2/60	3.5.6	Females	11	3.7	135	45.0	1	0.3	5	1.7	152	50.7
		Total	30	10.0	260	86.7	2	0.7	8	2.7	300	100.0
Mean Length		Males	62	2.0	61	6.0	56	0.0	60	0.0	C	0.0
Std. Error			1	1.0	4	.0	C	0.0	18	3,0	C	0.0
Mean Length		Females	62	7.0	61	5.0	66	0.0	61	4.0	C	0.0
Std. Error		- 7.055	2	2.0	3	.0	0	0.0	10	0.0	0	0.0

Coho Salmon

Escapement

Data

Andreafsky River coho salmon escapement catch age and sex composition by stratum, and mean length (mm), 2001.

Sample Dates	Sample Size	_	Brood Year and (Age Group)									
			1998 (1.1)		1997 (2.1)		1996					
							(2.2)		(3.1)		Total	
			No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Aug 21-26	157	Males	5	3.2	88	56.0	0	0.0	3	1.9	96	61.1
		Females	2	1.3	56	35.7	0	0.0	3	1.9	61	38.9
		Subtotal	7	4.5	144	91.7	0	0.0	6	3.8	157	100.0
Aug 27-Sept 15	137	Males	1	0.7	72	52.6	0	0.0	2	1.5	75	54.7
	N.C.M.	Females	0	0.0	61	44.5	0	0.0	1	0.7	62	45.3
		Subtotal	1	0.7	133	97.1	0	0.0	3	2.2	137	100.0
Season Total	294	Males	6	2.0	160	54.4	0	0.0	5	1.7	171	58.2
		Females	2	0.7	117	39.8	0	0.0	4	1.4	123	41.8
		Total	8	2.7	277	94.2	0	0.0	9	3.1	294	100.0
Mean Length		Males	568.0 14.0		565.0 3.0		0.0 0.0		518.0 19.0		0.0 0.0	
Std. Error												
Mean Length		Females	583.0		561.0		0.0		575.0		0.0	
Std. Error			43.0		3.0		0.0		8.0		0.0	

Sample Dates	Sample Size		Brood Year and (Age Group)									
			1998		1997 (2.1)			19				
							(2.2)		(3.1)		Total	
			No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	43	Males	2	4.7	24	55.8	0	0.0	0	0.0	26	60.5
		Females	5	11.6	12	27.9	0	0.0	0	0.0	17	39.5
		Total	7	16.3	36	83.7	0	0.0	0	0.0	43	100.0
Mean Length		Males	602.5		596.9		0.0		0.0		0.0	
Std. Error			17.7		42.8		0.0		0.0		0.0	
Mean Length		Females	613.0		605.0		0.0		0.0		0.0	
Std. Error			18.9		30.7		0.0		0.0		0.0	

^a Data refers to sport catch samples.

Otter Creek coho salmon escapement age and sex composition by stratum, and mean length (mm), 2001.

Sample Dates	Sample Size	22	Brood Year and (Age Group)									
			1998 (1.1)		1997 (2.1)			19				
							(2.2)		(3.1)		Total	
			No.	Per.	No.	Per.	No.	Per.	No.	Per.	No.	Per.
Season Total	25	Males	10	40.0	6	24.0	0	0.0	0	0.0	16	64.0
		Females	2	8.0	7	28.0	0	0.0	0	0.0	9	36.0
		Total	12	48.0	13	52.0	0	0.0	0	0.0	25	100.0
Mean Length		Males	568.0		588.0		0.0		0.0		0.0	
Std. Error			4.9		3.0		0.0		0.0		0.0	
Mean Length		Females	585,0		580.0		0.0		0.0		0.0	
Std. Error			2.1		1.8		0.0		0.0		0.0	